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Marine particle aggregation plays a crucial role in the global carbon cycle by transporting and 

sequestering carbon from the surface ocean to the deep sea. This thesis explores the mathematical 

physics of marine particle aggregation using the Smoluchowski Coagulation Equation (SCE). The 

primary goal is to evaluate the continuous deterministic version of the SCE and derive insights to 

enhance future modeling efforts of how particles form. Traditional methods for solving the SCE, 

such as The Method of Moments, the Sectional Approach, and the Fixed Pivot Method, offer 

various advantages in certain contexts but require a thorough understanding of the mathematics of 

the SCE. This study employs a direct algorithm for solving the SCE, leveraging Python's 

SciPy.Integrate module to calculate gains and losses of particle concentrations and SciPy.solve_ivp 

to solve the time derivative of mass-concentrations. The direct algorithm provides a transparent 
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means to explore the fundamental dynamics described by the SCE. This approach is valuable for 

introductory and exploratory modeling efforts. The numerical model uses an array of primary 

particle diameters to generate 50 discreet masses, simulating the aggregation dynamics over time, 

while incorporating critical microscale physical components driving encounters. Marine 

aggregates, which are influenced by convergence of phytoplankton physiology, microscale 

physics, and aggregation dynamics, are integral to the biological ocean pump. These aggregates 

form from encounters of primary particles (cells) through complex interactions involving fluid 

shear, differential settling, and Brownian motion, which are quantified by rectilinear and 

curvilinear coagulation kernels. Rectilinear kernels often overestimate collision frequencies by 

ignoring hydrodynamic effects, while curvilinear kernels provide more accurate predictions by 

accounting for these effects. Hence simulations with rectilinear kernels show that aggregation 

happens more rapidly than with simulations using curvilinear kernels. 

Results indicate that particles within the 400-500 μm size range exhibit a net positive gain in mass 

concentration, whereas particles smaller than 400 μm experience a net loss. The phenomenon of 

"gelation," where particle mass aggregates into a single large cluster, was observed, leading to a 

decrease in total observed mass. This effect underscores the need for a deeper understanding of the 

SCE and the development of more complex modeling approaches to accurately capture the 

dynamics of particle aggregation. 
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I. Introduction 

 

This thesis integrates the microscale physics of marine particle aggregation with the 

Smoluchowski Coagulation Equation to study an essential component of the biological carbon 

pump - the dynamics of particle formation - from a mathematical perspective using a numerical 

model. The primary goal is to evaluate the suitability of the continuous deterministic version of 

the Smoluchowski Coagulation Equation and to derive insights that can inform and enhance future 

modeling efforts. 

i. Phytoplankton Physiology and Microscale Physics 

 

Marine particle aggregation is a fundamental and complex process in the ocean, which is integral 

to the biological carbon pump and global carbon cycle. In the euphotic zone, primary producers 

like phytoplankton fix atmospheric carbon dioxide into their cells via photosynthesis, initiating the 

biological carbon pump by removing carbon from the atmosphere and into particulate matter in 

the surface ocean (Guidi et al., 2016). A key area of investigation in oceanography is the 

subsequent processes that determine marine particle formation and the subsequent efficiency of 

transport of carbon from the surface to the deep ocean. The Marine Curve (Martin et al., 1987) is 

a common construct that describes the relationship between organic carbon flux and depth (via 

sinking), and provides a way to quantify the amount of carbon transport to the deep sea. Central to 

this curve is the B-term (detailed in the Appendices), or attenuation coefficient, which is crucial as 

it determines the rate at which carbon flux decreases with depth. The complexities of 

phytoplankton physiology, microscale physics, and aggregation dynamics significantly influence 

the B-term. For instance, viral infection of phytoplankton during a bloom leads to a dramatic 

increase in transparent exopolymer particles (TEP), which enhances particle "stickiness" and leads 
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to greater marine particle aggregation (Engel, 2000). This process has been observed to for both 

diatoms (Yamada et al., 2018) and coccolithophores (Laber et al., 2018) populations. In this case, 

the overarching effect of an infection on a population of phytoplankton is to enhance particle 

aggregation and shuttle particulate organic matter (POM) to the deep ocean (Locke et al., 2022), 

effectively lowering the B-term and promoting carbon flux to greater depths. Depending on the 

phytoplankton composition, the nature of host-virus interactions and prevailing sea states 

(microscale physics), viruses can also lyse phytoplankton and stimulate upper ocean 

remineralization and respiration of dissolved organic matter (DOM), thereby increasing the B-term 

and preventing carbon sequestration (Locke et al., 2022). This complex interplay between 

phytoplankton physiology, marine viruses, and microscale physics, which fundamentally 

determines if marine particles form and aggregate, ultimately impacts the flux of the carbon to the 

deep sea and is a critical part of the biological carbon pump. The controls on aggregation of POM 

into marine snow particles under different physical regimes is the focus of this thesis.  

Phytoplankton particles (cells) can encounter and coagulate with each other and with other marine 

particles in the water column forming marine aggregates (Burd & Jackson, 2009). The rates at 

which particles encounter each other are called encounter rates, and microscale interactions that 

lead to aggregation are primed by encounters between marine particles (Słomka et al., 2023). 

Encounters are affected by the behavior of particles in fluid flow such as fluid shear due to laminar 

and turbulent flow regimes, differential settling due to sinking, Brownian motion due to random 

collisions, as well as the concentrations of particles in the medium.  

The continuous and deterministic Smoluchowski Coagulation Equation (SCE) models particle 

aggregation. This integro-differential equation is based on the premise that two particles of size r 

and s can combine to form an aggregate of size  𝑟 +  𝑠,  expressed as 𝐶𝑟 + 𝐶𝑠 → 𝐶𝑟+𝑠 (Wattis, 
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2006). Since mass is additive, the resulting aggregate mass is the sum of the individual particle 

masses. The SCE is given in equation (1) below: 

𝑑𝐶(𝑚, 𝑡)

𝑑𝑡
=

α

2
∫ β(𝑚𝑗, 𝑚 − 𝑚𝑗)𝐶(𝑚 − 𝑚𝑗 , 𝑡)𝐶(𝑚𝑗, 𝑡)𝑑𝑚𝑗

𝑚

0

− α𝐶(𝑚, 𝑡) ∫ β(𝑚, 𝑚𝑗)𝐶(𝑚𝑗 , 𝑡)𝑑𝑚𝑗

∞

0

.  (1) 

Equation (1) balances the time rate of change of particle concentrations of size 𝑚, denoted by 

𝐶(𝑚, 𝑡), by considering both the gain from the aggregation of smaller particles and the loss from 

their coalescence with other particles. The encounter rates are incorporated into coagulation 

kernels, β, and the particle stickiness is incorporated into the equation by the parameter α. 

Modeling aggregation dynamics under different condition states using the SCE can enhance our 

understanding of the biological carbon pump by allowing us to better predict the controls on 

aggregate formation and to improve future carbon flux models. 

II. Methodology 

 

The numerical model designed for this thesis solves the SCE in a direct manner. While there are 

various methods to solve the SCE, such as The Method of Moments (TMOM) (Islam et al., 2023), 

the Sectional Approach (Jackson, 1990), and the Fixed Pivot Method (Kumar & Ramkrishna, 

1996), the present model employs a direct algorithm for simplicity and direct application of the 

equation. This approach is valuable for introductory and exploratory modeling efforts, providing 

a foundation for further refinement and comparison with more complex methods. The model 

calculates 50 discreet masses, from a user provided array of particle diameters, to solve the gains 

and losses terms in equation (1) using Python's SciPy. Integrate module. The time derivative of the 
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mass-concentrations function is solved via Python's SciPy.solve_ivp module given an initial set of 

number concentrations for those 50 discreet mass points at time 𝑡 =  0 seconds.  

i. Aggregate Cluster Size Calculation 

 

To simplify the numerical modelling, all marine particles were of the same composition and had 

perfect spherical form with uniform mass-to-volume density. In reality, marine particles and 

aggregates are often non-spherical, have a certain degree of porosity and can vary in composition 

and density (e.g., due to the presence of biominerals and/or mucous). The simplification allows us 

to first test fundamental principles of aggregation before layering particle complexities. It is 

possible to map the mass of a particle/aggregate to its equivalent radius by means of a fractal 

dimension, which gives a measure of how the particles scale in the spatial dimension with respect 

to mass (Li & Logan, 2001). In general, this mass-radius relationship is as follows, 𝑚 ∝ 𝑟𝐷𝑓 . For 

spherical particles with uniform density, the fractal dimension, Df, is equal to 3. Hence m ∝ r3. 

Using the standard equations of density and volume of a sphere, the equation that maps the 

particles mass, m, to its radius, r, based on its density, ρ𝑝, is given by: 

𝑚 = ρp ×
4

3
× π × 𝑟3.  (2) 

This model also assumes that the aggregate structure is scale-invariant, meaning that the fractal 

dimension remains constant regardless of the aggregate size. However, when the structure of 

aggregates is not scale-invariant, determining the fractal dimension using the mass-radius 

relationship can produce inaccuracies, leading to overestimated values (Gmachowski, 2002). The 

standard units used in the model for mass, density, and radius are grams, grams per cubic 

centimeter, and centimeters, respectively. 
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ii. Aggregate Sinking Velocity Calculations 
 

A significant advantage of assuming spherical aggregates with uniform density allows for the 

calculation of aggregate settling velocities using the Stokes regime. This assumption simplifies the 

calculations and enables the application of Stokes' Law, which is suitable for small, smooth, and 

rigid spheres settling at low Reynolds numbers (Laurenceau‐Cornec et al., 2019). Stokes' Law 

provides a straightforward method to estimate the sinking velocity, W, from particle density, ρ𝑝, 

fluid density, ρ𝑓, gravitational acceleration, 𝑎𝑔, dynamic viscosity, μ, and radius, r, using the 

equation: 

𝑊 =
2

9
𝑎𝑔 (

𝜌𝑝 − 𝜌𝑓

𝜇
) 𝑟2.  (3) 

It is important to recognize that the application of Stokes' Law to marine aggregates is an 

approximation. Marine aggregates are complex in shape, structure, and composition, which can 

significantly alter their sinking behavior. For instance, non-spherical particles experience different 

drag forces compared to spherical ones, and their sedimentation behavior can be described using 

more complex models, such as the Navier-Stokes drag equation, which accounts for shape and 

surface roughness (Dogonchi et al., 2015).  Furthermore, the sinking dynamics of marine 

aggregates are influenced by the balance between biomineral ballast, which increases sinking 

speed, and mucus coatings, which slow it down, affecting their overall descent through the water 

column and residence time in the upper ocean (Chajwa et al., 2023). 
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iii. Defining The Coagulation Kinetic (Encounter) Rate Functions 

 

Coagulation Kernel Rectilinear Form Curvilinear Form 

Brownian Motion 

𝛃𝒃𝒓(𝒓𝒊, 𝒓𝒋) 

𝐾𝐵𝑇𝐾

μ

(𝑟𝑖 + 𝑟𝑗)
2

𝑟𝑖𝑟𝑗
 

None 

Laminar Shear 

𝛃𝒍𝒔(𝒓𝒊, 𝒓𝒋) 

4

3
γ(𝑟𝑖 + 𝑟𝑗)

3
 

None 

Turbulent Shear 

𝛃𝒕𝒔(𝒓𝒊, 𝒓𝒋) 

1.3 (
ϵ

ν
)

1
2

(𝑟𝑖 + 𝑟𝑗)
3
 9.8

𝑝2

1 + 2𝑝2
 (

ϵ

ν
)

1
2

(𝑟𝑖 + 𝑟𝑗)
3
 

𝑝 =
min{𝑟𝑖, 𝑟𝑗}

max{𝑟𝑖, 𝑟𝑗}
 

Differential 

Sedimentation 

𝛃𝒅𝒔(𝒓𝒊, 𝒓𝒋) 

π(𝑟𝑖 + 𝑟𝑗)
2

|𝑤𝑖 − 𝑤𝑗| 1

2
π(𝑟𝑖)2|𝑤𝑖 − 𝑤𝑗| 

Table 1. Radius input forms for each coagulation kernel. The variables 𝑟𝑖 and 𝑟𝑗 are the radii of particle 𝑖 and 𝑗 

respectively. The parameters 𝐾𝐵 , 𝑇𝐾 , μ, γ, ϵ, and ν are the Boltzmann Constant, thermodynamic temperature, kinetic 

viscosity, shear gradient, kinetic energy dissipation rate, and dynamic viscosity respectively. 

 

Equations (2) and (3) can be used to convert the coagulation kernels in Table 1.1 (Burd & Jackson, 

2009) from radius input form, β(𝑟𝑖, 𝑟𝑗), to mass input form β(𝑚𝑖, 𝑚𝑗). The mass input forms for 

the coagulation kernels are more compatible with Equation (1).  These kernels quantify the 

encounter rates of marine particles and serve as a first order pre-requisite for aggregation. 

Rectilinear kernels often overestimate collision frequencies by ignoring hydrodynamic effects, 

whereas curvilinear kernels account for these effects and provide more accurate predictions (Burd 

& Jackson, 2009).  For the simulations, a turbulent flow regime is assumed. The sum of all 

rectilinear kernels (excluding the Laminar Shear kernel) is used for rectilinear simulations, while 

curvilinear simulations use the rectilinear kernel for Brownian Motion and curvilinear kernels for 
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Turbulent Shear and Differential Sedimentation. Both rectilinear and curvilinear simulations are 

conducted for comparative purposes. 

iv. Defining The Initial Number Concentrations Functions 

 

The distribution of the concentrations of a particular cluster size is known as a Particle Size 

Distribution (PSD). Naturally occurring PSDs in the ocean can be measured by laser diffraction 

techniques. One instrument that does this is the Laser In-Situ Scattering and Transmissometry 

(LISST) instrument manufactured by Sequoia Scientific. Whilst the LISST instrument provides 

realistic PSDs for initial and final particle populations to quantify aggregation and derive stickiness 

(Engel, 2000), it is first useful and necessary to study the results of initializing the SCE with PSDs 

of known functional forms to better understand the mathematics involved in using the SCE for 

aggregation modelling. This provides opportunities to improve upon the numerical model and 

allow for naturally occurring PSDs (as measured by the LISST) to be initialized into the model for 

simulation under different condition states. 

Four different initial conditions were investigated using the numerical model: a constant 

distribution, a linear distribution, a normal distribution, and a trigonometric distribution, each with 

exact mathematical representations at time 𝑡 =  0. The initial conditions consist of 50 discreet 

mass points ranging from 1 to 500 micrometers. The constant distribution sets a uniform 

concentration of 5000 particles. The linear distribution varies from 0 to 5000 particles. The normal 

distribution, centered at 100 micrometers with a standard deviation of 100 micrometers, is scaled 

by a factor of 100. The trigonometric distribution uses sine functions to create a periodic pattern, 

scaled to approximately 3000 particles. 

III. Results  
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Figure 1. Simulation results for rectilinear (Plots A-D, left column) and curvilinear (Plots E-H, right column) forms 

of coagulation kernels for all defined functional initial mass concentrations. The corresponding mass per volume 

plot lies underneath the Overlay PSD for each simulation.  
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Figure 1 above shows the results of simulating marine particle aggregation over 24 hours for 

particles ranging from 1 μm to 500 μm.  Simulating aggregation for both rectilinear and curvilinear 

kernels provide a comparative and exploratory analysis of particle interactions, conducted as an 

academic exercise to understand the nuances of the mathematics of the SCE. As expected, 

simulations using the curvilinear kernels exhibit slower time evolutions of the PSD compared to 

the simulations involving the rectilinear kernels. However, the simulations involving both 

rectilinear and curvilinear kernels exhibit similar trends. Particles in the 400 μm to 500 μm ranges 

experience a net positive gain in mass concentrations, while particles smaller than 400 μm 

experience a net loss in mass concentrations during the time span of the simulation. All simulations 

tend to experience an overall decrease of total mass per volume. The simulations with constant and 

linear initial mass concentration distributions remain relatively steady before rapidly decreasing, 

whilst the simulations with the normally distributed and trigonometric initial mass concentrations 

remain relatively steady, then increase and then rapidly decrease with time. Note that the mass per 

volume plot for the Normally distributed initial mass concentration only shows a rapid increase in 

mass concentration after remaining relatively constant. It can be assumed with high confidence 

that total mass per volume will decrease rapidly, given a longer simulation time following the trend 

of the corresponding mass per volume plot for the rectilinear simulation. Simulations Plots for 

both rectilinear and curvilinear kernels can also be found in the Appendices.  

IV. Discussion and Conclusion 

 

Upon inspection of equation (1), if the gains in mass concentration for a particular size cluster 

exceed the losses at a particular time step, the time rate of change of the number concentration is 

positive, resulting in an increase in mass concentration for that particle size. Likewise, if the losses 

in mass concentration for a particular size cluster exceed the gains at a particular time step, the 
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time rate of change of the number concentration is negative, resulting in a decrease in mass 

concentration for that particular size. The former seems to be the case for particles of cluster sizes 

between 400 μm and 500 μm, whilst the latter seems to be the case for particle cluster sizes less 

than 400 μm throughout each simulation.  Additionally, the total mass of the system is not 

conserved for each simulation. This phenomenon, known as "gelation" (Wattis, 2006) occurs when 

a significant fraction of the mass aggregates into a single, large cluster, often referred to as a "gel". 

In the context of aggregation modeling in this thesis, it is unclear whether the breakdown of mass 

conservation is meaningful in describing the physical phenomena of aggregation or if it results 

from inadequacies in modeling aggregation using the SCE. What is clear from Equation (1) is that 

there are more ways for a particle of a particular size to lose mass concentration due to aggregation 

with all other particles than there are for the particle to gain mass concentration from only smaller 

particles. This is true regardless of the initial distribution of mass concentration across all sizes. 

The model shows this behavior, especially for the initially normally distributed and trigonometric 

PSDs, which have a relatively high mass concentration towards the smaller sizes of primary 

particles. By this logic, larger particles are more likely to lose mass concentration to particles 

outside their size range of the model, which may explain the breakdown of mass conservation. 

However, it is worth noting that mass conservation and gelation are consequences of the types of 

kernels used in the SCE and also depend on the boundedness of the systems moments (Islam et 

al., 2023). Delving deeper into the mathematics of the SCE is crucial for understanding the gelation 

phenomena. Furthermore, the SCE may need to be looked at from a Stochastic viewpoint and may 

need coupling with other equations such as Reynolds Transport Theorem for more accurate 

modelling because a deterministic version (Equation 1) may not adequately capture the full 

dynamics of marine particle aggregation. 
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Appendices 

 

A1. Rationale and Design of the Numerical Model 

 

The numerical model designed for this thesis is developed as an introductory approach to the 

Smoluchowski Coagulation Equation (SCE) and serves as an exploratory effort within the context 

of marine particle aggregation. As stated in Section 2 of Page 3, the model directly solves the SCE 

given by Equation (1). At its core, this means that given a user-defined range of diameters and a 

function that describes the initial distribution of number concentration across this diameter range, 

the model calculates the gains (first term on the right-hand side of Equation (1)) and losses (second 

term on the right-hand side of Equation (1)) for all provided diameters as the simulation advances 

in time. This involves numerically solving the time derivative (left-hand side of Equation (1)). 

The equation solvers used in the model come from Python's scipy library, which provides powerful 

capabilities for solving equations. The gains and losses are calculated using scipy.integrate.quad, 

a function for performing numerical integration. It uses adaptive quadrature methods to evaluate 

definite integrals over continuous intervals, handling continuous functions and providing accurate 

results by adaptively adjusting the integration process based on the function's behavior. This 

ensures precise evaluation of these integrals by accommodating the continuous nature of the 

functions involved. The time rate of change of the number concentration function is handled by 

scipy.integrate.solve_ivp, which features adaptive time-stepping. This allows for precise temporal 

resolution, capturing the dynamics of particle concentrations over time with high fidelity. The 

combination of spatial and temporal resolution enables the model to effectively simulate the 

complex processes of marine particle aggregation described by the SCE. 
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Also mentioned in Section 2 on Page 3 of the Thesis are the other methods that researchers have 

used to solve the SCE. These methods are slightly more complex and involve a stronger grasp on 

the mathematics of the SCE. They do have some advantages though. For example, The Method of 

Moments (TMOM) requires some understanding of functional analysis, and knowledge of what 

information a kth moment will produce (Islam et al., 2023) in order to accurately build an 

aggregation model. The advantage of this is that it simplifies the SCE by transforming it into a set 

of moment equations, which describe the evolution of the moments of the particle size distribution. 

This approach reduces complexity by eliminating the need to track the full-size distribution 

directly but comes at the expense of a detailed resolution because it does not solve for the 

distribution itself. What is also particularly notable when it comes to moments of the SCE is that 

there are some theorems that can be made use of in future modelling efforts for mass conservation 

(Islam et al., 2023).  

Another method that is advantageous when it comes to mass conservation is the Fixed Pivot 

method. The Fixed Pivot Method (FPM) ensures mass conservation and numerical stability by 

discretizing the size distribution into fixed intervals and redistributing mass among these intervals 

during aggregation. However, developing an algorithm for this method is much more complex 

than the algorithm used in the model for this thesis.  

The Sectional Approach involves dividing the particle size domain into sections and handling only 

one integral quantity (e.g., number, surface area, or volume) within each section. The integral 

quantity is conserved within the computational domain, and coagulations between all particle sizes 

are properly accounted for. Like the Fixed Pivot Method, the algorithm for this method will be a 

little more complex than the one used in the model for this thesis. 
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The numerical model used for this thesis is available on GitHub. This repository includes the full 

implementation of the model, source code, and detailed documentation to facilitate replication and 

further research. Access the repository at:  

https://github.com/Triv99/Triv_MOO_Thesis24 . 

 

A3. Table of Default Model Parameter Values 

 

Parameter Symbol Default Value Units 

Boltzmann Constant KB 1.38 × 10−23 

 

J/K 

Thermodynamic 

Temperature 

TK 293.15 

 

 

K 

Fluid Density ρf 1.025 

 

g/cm3 

Particle Density ρp 1.200 

 

g/cm3 

Dynamic Viscosity µ 1.0 × 10−3 

 

kg/ m*s 

Kinematic Viscosity ν μ

ρ𝑓 × 1000
 

 

m2/s 

Shear Gradient γ 1 

 

1/s 

Turbulent Energy 

Dissipation Rate 

ϵ 1.0 × 106 

 

 

m2/s3 

Gravitational 

Acceleration 

ag 9.81 m/s2 

Table A1. This table lists the default values of various parameters used in the numerical model for marine particle 

aggregation. The parameters include physical constants, fluid properties, and model-specific variables necessary for 

simulating the Smoluchowski Coagulation Equation. The symbols and units for each parameter are also provided for 

clarity. 

 

 

 

https://github.com/Triv99/Triv_MOO_Thesis24
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A4. Table of Mass Input Form for the Coagulation Kernels 
 

To covert the coagulation kernels in Table 1 on page 5 of thesis, we first define the following 

constants: 

𝐾1 =
3

4

1

π ρ𝑝
, 

𝐾2 =
ρ𝑝 − ρ𝑓

μ
. 

Then, by Equations (2) and (3), and by accounting for the physical units, the kernels in Table 1 

become: 

Coagulation  

Kernel 

Rectilinear Form Curvilinear Form 

 

Brownian  

Motion 

 

𝜷𝒃𝒓(𝒎𝒊, 𝒎𝒋) 

 

 

2

3
× 106 ×

𝐾𝐵𝑇𝑡ℎ

μ

(𝑚
𝑖

1
3 + 𝑚

𝑗

1
3)

2

(𝑚𝑖𝑚𝑗)
1
3

 

 

 

 

 

None 

 

Laminar  

Shear 

 

𝛃𝒍𝒔(𝒎𝒊, 𝒎𝒋) 

 

 

4

3
γ𝐾1 (𝑚

𝑖

1
3 + 𝑚

𝑗

1
3)

3

 

 

 

 

 

None 

 

Turbulent  

Shear 

 

𝛃𝒕𝒔(𝒎𝒊, 𝒎𝒋) 

 

 

1.3 (
ϵ

ν
)

0.5

𝐾1 (𝑚
𝑖

1
3 + 𝑚

𝑗

1
3)

3

 

 

 

9.8
𝑃2

1 + 2𝑃2
(

ϵ

ν
)

0.5

𝐾1 (𝑚
𝑖

1
3 + 𝑚

𝑗

1
3)

3

 

 

 

Differential  

Settling 

 

𝛃𝒅𝒔(𝒎𝒊, 𝒎𝒋) 

 

 

20

9
π𝑎𝑔𝐾2𝐾1

4
3 (𝑚

𝑖

1
3 + 𝑚

𝑗

1
3)

2

|𝑚
𝑗

2
3 − 𝑚

𝑖

2
3| 

 

 

10

9
π𝑎𝑔𝐾2𝐾1

4
3 𝑚

𝑖

2
3 |𝑚

𝑖

2
3 − 𝑚

𝑗

2
3| 

 

Table A2. This table presents the coagulation kernels in their rectilinear and curvilinear forms, expressed in terms of 

mass inputs. These kernels are used in the numerical model to simulate marine particle aggregation, detailing the 

encounter rates for Brownian motion, laminar shear, turbulent shear, and differential settling. 
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Figure A1. Coagulation Kernel Rates for Rectilinear and Curvilinear Forms. This figure displays the 

coagulation rates for different particle interactions based on particle diameters, shown for Brownian motion, laminar 

shear, turbulent shear, and differential settling. Each subplot illustrates the rate (cm³/s) as a function of the diameters 

of two interacting particles (Particle 1 and Particle 2). The top row presents the rectilinear forms of the kernels, 

while the bottom row presents the curvilinear forms, highlighting the differences in collision frequencies when 

hydrodynamic effects are considered. 

 

A5. The Martin Curve Equation 

 

The Martin Curve is mathematically expressed as: 

𝐹(𝑧) = 𝐹(𝑧0) (
𝑧

𝑧0
)

−𝑏

, 

where 𝐹(𝑧) is the flux of particulate organic carbon (POC) at depth 𝑧, 𝐹(𝑧0) is the flux at a 

reference depth 𝑧0, and 𝑏 is the attenuation coefficient (B-term). The B-term is pivotal as it 

quantifies the rate at which the POC flux attenuates with depth, and thus, the efficiency of carbon 

sequestration in the deep ocean.  
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A6. Simulation Plots 
 

 

Figure A2. Rectilinear Numerical Simulations of Marine Particle Aggregation for 24 Hours. The figure 

presents the results of numerical simulations using rectilinear kernels for marine particle aggregation over a 24-hour 

period. The left column shows the particle size distribution (PSD) over time for different initial conditions: constant, 

linear, normal, and trigonometric. The right column displays the corresponding total mass per volume time series. 

Each subplot in the left column illustrates the number concentration of particles across various diameters at specific 

time intervals, while the subplots in the right column show the evolution of total mass per volume, highlighting the 

dynamics of mass conservation and aggregation processes. 
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Figure A3. Curvilinear Numerical Simulations of Marine Particle Aggregation for 24 Hours. The figure 

presents the results of numerical simulations using curvilinear kernels for marine particle aggregation over a 24-hour 

period. The left column shows the particle size distribution (PSD) over time for different initial conditions: constant, 

linear, normal, and trigonometric. The right column displays the corresponding total mass per volume time series. 

Each subplot in the left column illustrates the number concentration of particles across various diameters at specific 

time intervals, while the subplots in the right column show the evolution of total mass per volume, highlighting the 

dynamics of mass conservation and aggregation processes under the influence of hydrodynamic effects. 

 


