Omnivorous summer feeding by juvenile Antarctic krill in coastal waters

John A. Conroy, Deborah K. Steinberg, Schuyler C. Nardelli, Oscar Schofield

Abstract

The Antarctic krill Euphausia superba is often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound-specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplanckton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food-web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean.

The Antarctic krill Euphausia superba (hereafter “krill”) contributes to Southern Ocean carbon export (Gleiber et al. 2012; Belcher et al. 2019), supports large populations of vertebrate predators (Trathan and Hill 2016), and is targeted by the region’s largest commercial fishery (Nicol and Foster 2016). Krill are omnivores and assessing their trophic role is challenging, although phytoplankton typically are considered their primary prey (Hewes et al. 1985; Price et al. 1988; Schmidt and Atkinson 2016). Phytoplankton biomass and composition change with regional sea ice coverage (Montes-Hugo et al. 2009; Brown et al. 2019), but the implications of changing prey composition remain unclear for krill. Increased reliance on heterotrophic prey likely would decrease the proportion of phytoplankton production that is vertically exported or made available to krill predators, as organic matter is lost via respiration with each trophic step between phytoplankton and krill.

Krill have a lifetime of ~6 yr, and juvenile (age-class 1) krill exhibit particular trophic flexibility. In years of successful recruitment, juveniles dominate the krill population and predator diet composition, apparently due to strong bottom-up forcing (Saba et al. 2014). However, the number of trophic transfers between phytoplankton and vertebrate predators remains uncertain, because krill feed on a combination of phytoplankton, copepods, and protistan grazers (Schmidt et al. 2006). Juvenile krill generally occupy lower trophic positions (TPs) than adults (Polito et al. 2013; Schmidt et al. 2014), and higher-productivity continental shelf regions such as the West Antarctic Peninsula (WAP) are associated with faster krill
growth, presumably due to diatom-dominated diets (Atkinson et al. 2006; Schmidt et al. 2014). However, phytoplankton ingestion (i.e., grazing) rates are insufficient to satisfy minimum respiratory requirements, let alone growth, for juveniles during summer along the WAP (Bernard et al. 2012). We thus investigated the diet composition of juvenile krill, which must feed on animals to an unknown extent.

In this study, we employed multiple methods to examine the dietary flexibility of juvenile krill during productive summer months at the coastal WAP. By focusing on the juvenile life stage in a productive season and location (Clarke et al. 2008; Vernet et al. 2008), we expected this study to provide an upper-limit estimate for phytoplankton contributions to krill diet. Using a combination of semiweekly field sampling and a series of 24-h incubation experiments, our main objectives were to: (1) determine seasonal growth and carbon requirements for juvenile krill; (2) understand grazing dynamics, including mass-specific grazing rates and size selectivity; (3) create a carbon budget for juvenile krill to evaluate the contribution of major prey groups; and (4) assess interannual changes in TP and dietary composition. Our results quantify the diverse juvenile krill diet and show these animals rely upon heterotrophic prey even in a season and location favorable for herbivory.

Materials and methods

Krill collection, seasonal growth, and carbon requirement

We collected krill southwest of Anvers Island, near Palmer Station (64°46′S, 64°03′W), as part of the Palmer Antarctic Long-Term Ecological Research (PAL LTER) program. Our sampling spanned November to March over three field seasons: 2017–2018, 2018–2019, and 2019–2020 (Conroy et al. 2023). We collected krill aboard a rigid-hulled inflatable boat using two net types: a 1-m square frame, 700-μm mesh Metro net and a 1-m diameter, 200-μm mesh ring net. We sampled from 0 to 50 m at PAL LTER Sta. B (≈1 km from Palmer Station, bottom depth ≈70 m) and Sta. E (≈5 km from Palmer Station, bottom depth ≈160 m) twice per week (Supplementary Fig. S1) (Conroy et al. 2023) and less consistently at other fixed sampling locations or by targeting krill swarms identified by echosounder.

The daily length mode for juvenile krill was used to calculate a seasonal growth curve. We measured krill to the nearest 0.01 mm using Standard Length 1 (Mauchline 1980). Krill collected in multiple tows on the same date were pooled for modal analysis, and only dates with >20 measured krill were included (median: 106 krill measured per date; range: 21–431). Lengths were binned into 1-mm intervals, and a kernel density estimate was fit to each daily length–frequency distribution using the function “density” in R (R Core Team 2021) (Supplementary Methods; Supplementary Figs. S2–S4). The length-at-date data \( n = 55 \) d were fit to a Von Bertalanffy growth model using the function “nls” in R. The resulting model fit exhibited homoscedasticity, and the residuals were normally distributed.

The Von Bertalanffy model fit was then used to calculate a daily carbon budget for juvenile krill. Length (mm) was converted to dry weight (mg) as in Ryabov et al. (2017). Carbon was assumed to constitute 46.3% of dry weight, which was the mean of values for juvenile krill collected in December (Ikeda and Bruce 1986) and February (Färber-Lord et al. 2009). Daily growth rate \( G; \text{mg C d}^{-1} \) for each day \( n \) was calculated as: \( G_n = (CW_{n+1} - CW_{n-1})/2 \), where \( CW \) is carbon weight. The minimum daily respiratory requirement (mg C d\(^{-1}\)) was calculated from dry weight as in Holm-Hansen and Huntley (1984). Minimum carbon ingestion was calculated as the sum of daily growth and respiration, divided by an assimilation efficiency of 85%. Prior studies report mean assimilation efficiencies of 84–88% for krill (Meyer et al. 2003; Fuentes et al. 2016).

Chlorophyll \( a \) grazing: Gut fluorescence

Chlorophyll \( a \) (Chl \( a \)) content in field-collected krill was measured using the gut fluorescence technique. Individual krill were removed immediately from the catch, measured for length and frozen in liquid \( \text{N}_2 \). We froze 3–5 individuals of each distinct size class per tow. Samples were stored at \(-80^\circ \text{C}\) until analysis. Gut pigments were extracted from whole animals in 90% acetone for at least 48 h at \(-20^\circ \text{C}\) to ensure complete pigment extraction without homogenization (Bämstedt et al. 2000; Pakhomov and Froneman 2004). Samples were centrifuged and returned to room temperature for determination of pigment concentration before and after acidification using a Turner 10 AU fluorometer.

Grazing rate \( \left( \mu \text{g Chl } a \text{ equiv. ind.}^{-1} \text{ h}^{-1} \right) \) was calculated as the product of gut pigment content (sum of phaeopigments and Chl \( a \)) in \( \mu \text{g} \) and gut evacuation rate \( \left( \text{h}^{-1} \right) \). We used a value of 1.48 h\(^{-1}\) for the gut evacuation rate, the mean of experimentally derived rates (range 1.12–1.90 h\(^{-1}\)) for juvenile krill during summer in WAP shelf waters (Bernard et al. 2012). Hourly grazing rate was multiplied by 24 h to calculate daily grazing rate \( \left( \mu \text{g Chl } a \text{ equiv. ind.}^{-1} \text{ d}^{-1} \right) \). Grazing rate and mass-specific grazing rate \( \left( \mu \text{g Chl } a \text{ equiv. mg DW}^{-1} \text{ d}^{-1} \right) \) were log-transformed for linear regression to test for relationships with standard length and log-transformed Chl \( a \) concentration. Chl \( a \) concentration was measured via fluorometric analysis of bottle samples and integrated 0–50 m (Schofield et al. 2017; Conroy et al. 2023).

Chlorophyll \( a \) grazing: Functional response

We conducted feeding incubations with juvenile krill to measure clearance rate (i.e., the rate at which a predator sweeps a volume of water clear of a prey type) and grazing rate on natural plankton communities. Krill were collected from the upper 50 m in net tows using a non-filtering cod end, transferred to 20-liter buckets of whole seawater, and...
acclimated for 24 h to experimental conditions in an outdoor flow-through incubator at ambient temperature and light conditions (screened for ~33% light transmittance). We collected whole seawater the following day from the depth of the Chl \(a\) maximum to fill the experimental buckets and took initial samples for Chl \(a\) and particle size distribution. Chl \(a\) samples were filtered through Whatman GF/F filters and frozen at \(-80^\circ\mathrm{C}\) until analysis.

Four to 10 krill were transferred to each of 4–6 experimental replicates. An additional 4–6 replicates were maintained as controls without krill. All experimental buckets were gently stirred on average every 2 h to re-suspend cells. Experiments ran for 24 h, after which final samples for Chl \(a\) and particle size distribution were collected from each replicate. Replicates were excluded if krill were dead or inactive.

In one case, experimental seawater was diluted with 0.2-\(\mu\)m filtered seawater so that treatments of 100%, 30%, and 10% whole seawater were incubated on a single date. These concentrations were treated as separate experimental units, because measuring clearance rate at low prey concentrations is critical for distinguishing functional response types (i.e., consumption as a function of prey density) (Kiørboe et al. 2018). In this case, three krill replicates and a single control were maintained at each concentration.

Clearance and grazing rates were calculated to determine the krill feeding functional response. Clearance rate (L ind.\(^{-1}\) d\(^{-1}\)) was calculated according to Frost (1972), and negative clearance rates (14 out of 67 total replicates) were excluded from further analysis (Supplementary Methods). Grazing rate was calculated as the product of clearance rate and initial Chl \(a\) concentration (Marin et al. 1986). Type II (Holling 1965) and type III (Kiørboe et al. 1982) functional response curves were fit using the “nls” function in \(R\). These two functional responses differ at low prey concentrations, with clearance rate peaking when prey is scarce for a type II response but declining under such conditions for a type III response. The experimental data better fit a type III functional response due to declining clearance rates at low Chl \(a\) concentrations.

The experimentally derived type III functional response model allowed estimation of grazing rates based on repeated field observations of Chl \(a\) concentration. In situ Chl \(a\) concentration was measured twice per week at PAL LTER Sta. B on 0–60 m downcasts with a Wet Labs ECO fluorometer. Fluorescence data were binned into 1-m depth intervals prior to identifying the maximum Chl \(a\) concentration (chl\(_{\text{max}}\)) for each vertical profile. We solved for Chl \(a\) grazing using the chl\(_{\text{max}}\) from each vertical profile.

**Phytoplankton carbon**

To evaluate phytoplankton grazing in juvenile krill carbon budgets, we utilized historical field data to calculate two different regression fits for converting Chl \(a\) to phytoplankton carbon (\(C_{\text{phyto}}, \mu\)g C L\(^{-1}\)) (Supplementary Methods). The two chlorophyll-to-carbon regression fits were used to calculate high and low \(C_{\text{phyto}}\) values from experiments and field observations. All calculations were repeated with both the high and low \(C_{\text{phyto}}\) regression fits to define an envelope of feasible values (Supplementary Methods). The contemporary Sta. B \(C_{\text{phyto}}\) time-series data were used to repeatedly solve the functional response equations, resulting in seasonal time series of high and low \(C_{\text{phyto}}\) grazing for each field season. Finally, we integrated the high and low estimates of \(C_{\text{phyto}}\) grazing rates each year from 01 December to 28 February and divided by minimum required carbon ingestion over the same period to evaluate the dietary contribution of phytoplankton.

**Size-selective grazing**

Initial and final experimental particle size distributions were derived from 5-mL samples analyzed with an Imaging FlowCytobot (Olson and Sosik 2007). Images included both photosynthetic and non-photosynthetic particles, because the instrument was set to trigger with a side scatter or fluorescence threshold. For three experiments, samples were preserved in 50% glutaraldehyde, frozen in liquid \(N_2\) and stored at \(-80^\circ\mathrm{C}\) until analysis. Preservation may lead to overestimation of total biovolume and cell abundance, but relative changes (as considered here within experiments) were consistent in a comparison of live and preserved samples (Nardelli et al. 2023). The proportional contribution of different taxonomic groups was also similar in live and preserved comparisons. Particle images were processed according to Sosik et al. (2004). All particles with a diameter of 4–40 \(\mu\)m were categorized into 13 discrete bins based on equivalent spherical diameter, and all bin widths were equal on a logarithmic scale. The biovolume concentration (\(\mu\)m\(^3\) L\(^{-1}\)) was summed within each bin for every sample. Clearance rates for each prey size bin were calculated according to Frost (1972), and negative values were excluded.

**Compound-specific isotope analysis of amino acids**

Krill from 4 to 10 sampling dates during each season were frozen at \(-80^\circ\mathrm{C}\) at Palmer Station and processed for compound-specific isotope analysis of amino acids (CSIA-AA). Each sample consisted of 6–78 individuals collected on the same day. We measured krill length, dissected the 3\(^{\text{rd}}\) and 4\(^{\text{th}}\) abdominal segments, and removed the exoskeleton (Schmidt et al. 2004). Each pooled daily sample was freeze-dried for 24 h, then homogenized, and weighed (range 5.7–34.5 mg). Samples were processed at the Stable Isotope Facility at the University of California, Davis for CSIA-AA of \(^{15}\)N following Walsh et al. (2014) and Yarnes and Herszage (2017) (Supplementary Methods).

**Trophic position and dietary composition**

CSIA-AA provides an internal index for TP, accounting for asynchronous changes in the isotopic signature of primary producers and consumers (Schmidt et al. 2004). The \(\delta^{15}\)N (ratio of \(^{15}\)N/\(^{14}\)N) of “trophic” amino acids increases
substantially with each trophic step (McMahon and McCarthy 2016). In contrast, N fractionation is limited in “source” amino acids, which retain \( \delta^{15}N \) values similar to a food web’s baseline. The difference in \( \delta^{15}N \) between “trophic” and “source” amino acids is used to determine TP.

Trophic fractionation within a food web generally declines after the initial transfer from phytoplankton to zooplankton (McMahon and McCarthy 2016; Décima et al. 2017). Therefore, multiple trophic enrichment factors (TEFs) are used to account for this variability. TEFs represent the \( \delta^{15}N \) change in a trophic amino acid normalized to the \( \delta^{15}N \) change in a source amino acid for a given trophic step. We thus calculate krill TP according to Hoen et al. (2014):

\[
TP = \frac{\delta^{15}N_{\text{trophic}} - \delta^{15}N_{\text{source}}}{\text{TEF}_{\text{carnivory}}} - \beta - \text{TEF}_{\text{herbivory}} + 2
\]

where \( \beta \) is the mean difference between \( \delta^{15}N \) values of the trophic and source amino acids within primary producers, and TEF_{herbivory} and TEF_{carnivory}, respectively, are the TEFs for herbivorous and carnivorous trophic transfers.

We calculated TP separately using glutamic acid (Glu) and alanine (Ala) as trophic amino acids. Both glutamic acid and alanine enrich through metazoans, but only alanine enriches through protistan grazers (Gutiérrez-Rodríguez et al. 2014; Décima et al. 2017). Phenylalanine (Phe) was the source amino acid in both cases. We used \( \beta \) and TEF_{herbivory} values from Chikaraishi et al. (2009): \( \beta_{\text{Glu}} = 3.4\% \); \( \beta_{\text{Ala}} = 3.2\% \); TEF_{herbivory\text{}}{\text{Glu}} = 7.6\% ; TEF_{herbivory\text{}}{\text{Ala}} = 5.7\% . For TEF_{carnivory}, we used lower values from Décima and Landry (2020): TEF_{carnivory\text{}}{\text{Glu}} = 6.1\% and TEF_{carnivory\text{}}{\text{Ala}} = 4.5\%. This approach enables characterization of a range of feasible dietary contributions from major prey groups. We used the mean krill TP_{Glu} and TP_{Ala} values from each field season for this exploratory exercise. We calculated the dietary fractions of metazoans and heterotrophic protists as in Décima and Landry (2020) (Supplementary Methods). Calculating these dietary fractions involves multiple unmeasured parameters and should be considered experimental. The phytoplankton dietary fraction was a closure term (i.e., total diet composition must sum to 100%) for comparison with the same metric calculated from the seasonal carbon budget.

**Prey biomass**

For comparison with interannual patterns in krill trophic role, metazoan and phytoplankton prey were quantified from time-series sampling at PAL LTER Stas. B and E across the study years. Mesozooplankton (0.2–2 mm) biomass, an indicator of metazoan prey availability, was measured twice weekly using a 1-m diameter, 200-μm mesh ring net from 0 to 50 m (Conroy et al. 2023). Mesozooplankton dry weight density (g m\(^{-3}\)) was depth-integrated to 50 m (g m\(^{-2}\)). Phytoplankton biomass (Chl a) was measured via fluorometric analysis as described above (Schofield et al. 2017; Conroy et al. 2023).

**Results**

**Seasonal growth and carbon requirement**

November to March was a period of rapid growth and increasing carbon demand for juvenile krill. The length mode increased from 13–16 mm in early November to 26–30 mm in late February (Fig. 1a). Length-based growth rate declined from 0.21 mm d\(^{-1}\) on 06 November to 0.082 mm d\(^{-1}\) on 03 March. The mean length-based growth rate over that period was 0.13 mm d\(^{-1}\). Carbon-based growth rate (mean = 0.14 mg C d\(^{-1}\)) followed the opposite seasonal trend, increasing from 0.07 mg C d\(^{-1}\) on 06 November to a maximum of 0.17 mg C d\(^{-1}\) on 23 February (Fig. 1b). More carbon was required for growth than for respiration until 22 December, but after 20 February daily growth equaled < 50% of the respiratory demand. Minimum carbon ingestion increased seasonally from 0.12 mg C d\(^{-1}\) (8.1% of body C) to 0.65 mg C d\(^{-1}\) (3.6% of body C) (Fig. 1c).

![Fig. 1](https://example.com/figure1.png)  
**Fig. 1.** Seasonal time series of juvenile krill growth and carbon demand. (a) Daily length modes (colored points) and the Von Bertalanffy model fit (black line), (b) modeled daily growth (dashed black line) and respiration rates (dotted gray line), and (c) modeled minimum daily carbon ingestion are plotted from November to March for juvenile krill near Palmer Station using data from 3 successive years.
Chlorophyll \textit{a} grazing

As measured by the gut fluorescence method, the mean Chl \textit{a} grazing rate was 0.73 \(\mu g\) Chl \textit{a} ind\(^{-1}\) d\(^{-1}\) (range: 0.08–2.6 \(\mu g\) ind\(^{-1}\) d\(^{-1}\); \(n = 48\) tows). Seasonal patterns in grazing rate changed among years (Fig. 2a), but the mean grazing rate was not significantly different between years (\(\log_{10}\)-transformed ANOVA: \(F_{2,45} = 1.4;\ p = 0.26\)). The mean grazing rate increased with depth-integrated Chl \textit{a} concentration (linear regression: \(t = 2.5;\ p = 0.016;\ r^2 = 0.12\)) but was not significantly correlated with the mean length of krill (linear regression: \(t = 1.1;\ p = 0.26\)). The mass-specific grazing rate was more strongly related with Chl \textit{a} concentration (linear regression: \(|t| > 3.0;\ p < 0.005;\ r^2 = 0.47\)).

Chl \textit{a} grazing in experimental feeding incubations exceeded gut fluorescence measurements and fit a type III functional response. Mean initial Chl \textit{a} ranged from 0.10 to 3.1 \(\mu g\) L\(^{-1}\) across 13 experiments, and mean grazing rates ranged from 0.11 to 4.0 \(\mu g\) ind\(^{-1}\) d\(^{-1}\) (Fig. 3a). According to this functional response curve, the Chl \textit{a} grazing rate was 2.6 \(\mu g\) ind\(^{-1}\) d\(^{-1}\) (i.e., equal to the maximum rate from gut fluorescence) when Chl \textit{a} concentration was 1.6 \(\mu g\) L\(^{-1}\). At the high end of our experimental range, a Chl \textit{a} concentration of 3.0 \(\mu g\) L\(^{-1}\) coincided with a modeled grazing rate of 3.6 \(\mu g\) ind\(^{-1}\) d\(^{-1}\). The type III functional response fit indicated that clearance rate reached a maximum of 1.8 L ind\(^{-1}\) d\(^{-1}\) when Chl \textit{a} was 0.98 \(\mu g\) L\(^{-1}\) and then gradually declined as Chl \textit{a} increased (Fig. 3b).

The Chl \textit{a} grazing time series calculated from the experimental functional response and in situ chl\textsubscript{max} measurements yielded higher values than the gut fluorescence method. Across three field seasons, chl\textsubscript{max} at PAL LTER Sta. B ranged from 0.2 to 19.1 \(\mu g\) L\(^{-1}\) over 104 sampling dates and was below our maximum experimental concentration of 3.1 \(\mu g\) L\(^{-1}\) for 76\% of observations (Supplementary Fig. S7). Chl\textsubscript{max} was significantly higher in 2018–2019 (median: 2.8 \(\mu g\) L\(^{-1}\)) than in 2017–2018 (1.3 \(\mu g\) L\(^{-1}\)) or 2019–2020 (1.5 \(\mu g\) L\(^{-1}\)) (\(\log_{10}\)-transformed ANOVA: \(F_{2,101} = 13.9;\ p < 0.0001;\) Tukey’s Honestly Significant Difference: \(p < 0.005\)). The mean Chl \textit{a} grazing rate from the functional response model was 2.8 \(\mu g\) ind\(^{-1}\) d\(^{-1}\) (Fig. 4), which exceeded the highest daily grazing rate from the gut fluorescence method (2.6 \(\mu g\) ind\(^{-1}\) d\(^{-1}\)). Mean Chl \textit{a} grazing was 3.4 \(\mu g\) ind\(^{-1}\) d\(^{-1}\) in 2018–2019 and significantly higher compared to 2.2 and 2.6 \(\mu g\) ind\(^{-1}\) d\(^{-1}\), respectively, in 2017–2018 and 2019–2020 (ANOVA: \(F_{2,101} = 14.5;\ p < 0.0001;\) Tukey’s HSD: \(p < 0.004\)).

Phytoplankton carbon grazing

The high and low seasonal C\textsubscript{phyto} grazing scenarios differed by a factor of 2, and both scenarios indicate that autotrophic prey were inadequate to satisfy juvenile krill dietary needs during summer near Palmer Station. The seasonally integrated minimum ingestion to support growth and respiration from 01 December to 28 February was 39.3 mg C ind\(^{-1}\) (Fig. 5). In comparison, the estimates of C\textsubscript{phyto} grazing for that same period ranged from 5.5 to 13.8 mg C ind\(^{-1}\). Accordingly, phytoplankton accounted for only 14–35\% of the minimum carbon ingestion required by juvenile krill during our three summer field seasons. This deficit was the result of consistent phytoplankton grazing while krill grew larger and respiratory requirements increased (Supplementary Fig. S9). As such, daily phytoplankton rations declined seasonally and were consistently <1\% krill body C d\(^{-1}\) by mid-February (Supplementary Fig. S10).

Size-selective grazing

 Imaging flow cytometry from 11 feeding experiments revealed a mismatch between the size-selectivity of juvenile krill and the size distribution of their potential prey, with phytoplankton biomass concentrated within small cells that krill consumed inefficiently. The mean clearance rate increased from ~1 L ind\(^{-1}\) d\(^{-1}\) on particles sized 4–12 \(\mu m\) to 4.5 L ind\(^{-1}\) d\(^{-1}\) on particles 34–40 \(\mu m\), the largest size bin in

---

**Fig. 2.** Gut fluorescence-based estimates of Chl \textit{a} grazing by juvenile krill. (a) Time series of daily mean Chl \textit{a} grazing is plotted for three field seasons. (b) Depth-integrated Chl \textit{a} concentration and (c) length of krill are plotted against mass-specific grazing. Log–log and log–linear regression fits are plotted in (b) and (c), respectively.
In contrast, 5–12 μm particles accounted for 62% of mean initial prey biovolume in our feeding experiments (Fig. 6b). The variability in total phytoplankton biomass across experiments was likely due to changes in 5–12 μm cells, the biovolume of which was more variable than that of larger size classes.

**Trophic position and dietary composition**

TP estimates using the δ15N values of amino acids support the importance of heterotrophic prey for juvenile krill during summer. The source amino acid phenylalanine δ15N values ranged from −0.7‰ to 2.7‰ while the δ15N values of the trophic amino acids glutamic acid and alanine ranged from 12.0‰ to 18.2‰, respectively (Fig. 7; Supplementary Table S1). TPchl (mean = 2.3 ± 0.2 standard deviation) was significantly lower than TPala (mean = 3.1 ± 0.4) (paired t-test: $t = 16; df = 22; p = 2.2 \times 10^{-13}$) (Fig. 8a,b). This difference presumably was due to trophic steps through heterotrophic protists, which TPchl does not detect. The mean difference in TP estimates between the two methods was 0.7 and did not change significantly between years (ANOVA: $F_{2,20} = 1.2; p = 0.32$), indicating that heterotrophic protists were a substantial, consistent trophic link between phytoplankton and juvenile krill. In contrast, mean TPchl and TPala were both 0.2–0.5 trophic steps lower in 2017–2018 compared to 2018–2019 and 2019–2020 (ANOVA: $F_{2,20} > 5.2; p < 0.02$; Tukey’s HSD: $p < 0.05$) (Fig. 8a,b), suggesting that the trophic contribution of metazoan prey increased in the latter 2 yr. This interannual pattern matched changes in mesozooplankton biomass, which also was lowest in 2017–2018 (log10-transformed ANOVA: $F_{2,114} > 6.8; p < 0.002$; Tukey’s HSD: $p < 0.02$) (Fig. 8c).

Our exploratory stable isotope approach attributed on average approximately one-third of krill dietary composition each to phytoplankton, heterotrophic protists, and metazoans (Table 1). The isotope-derived phytoplankton dietary fraction exceeded that from the carbon budget in 2017–2018, but mean values of 22–27% agreed across methods in the final 2 study years (Table 1). The carbon budget did not reflect interannual changes evident in the stable isotope data. High and low estimates of phytoplankton and heterotrophic protist dietary fraction differed by 30–41% within each year,
indicating substantial uncertainty. This exercise revealed it was unlikely for a single major prey group to dominate the juvenile krill diet in any year, with all annual estimates falling below 63% (Table 1). Phytoplankton, heterotrophic protists, and metazoans each had the highest mean dietary fraction estimate for a single year, indicating that the relative balance among prey groups changed. The interannual changes were greatest (and inversely related) for phytoplankton and metazoan dietary fraction. The shift toward a larger metazoan dietary fraction coincided with years of increased mesozooplankton prey. Changes in Chl \(a\) were not consistent with krill diet alteration. Overall, this analysis suggests juvenile krill utilized a diverse and changing suite of prey across 3 yr.

**Discussion**

**Seasonal growth and carbon requirement**

Summer is a period of rapid growth for juvenile krill, and our measured growth rates appear robust when compared with other methods. Mean daily growth rate during January and February was 0.11 mm d\(^{-1}\). Similarly, a length-frequency approach utilizing net surveys from 1992 to 2008 in the northern Antarctic Peninsula reported mean growth of \(\sim 0.1\) mm d\(^{-1}\) between January and February for 20–30 mm krill (Shelton et al. 2013). A meta-analysis of instantaneous growth rate data found a seasonal decline in daily growth from \(\sim 0.2\) mm d\(^{-1}\) in early summer to < 0.1 mm d\(^{-1}\) by early autumn (Kawaguchi et al. 2006), similar to the pattern from our Von Bertalanffy model fit. Given the agreement between these independent methods and studies, our length-based seasonal growth curve is a reasonable basis from which to infer minimum carbon demand.

Our calculated minimum daily carbon ingestion was conservative, because it accounted only for respiration and somatic growth. Minimum ingestion rates of 4–8% krill body carbon d\(^{-1}\) found in this study are well below the highest reported daily rations of \(\sim 20\%\) body carbon d\(^{-1}\) (Clarke et al. 1988; Atkinson et al. 2006). We assumed investment in reproduction was negligible, because krill typically do not reach maturity until at least 32 mm (age-class 2) (Siegel and Loeb 1994; Reiss 2016). Excretion, however, was not calculated and may be substantial. Experimentally measured dissolved organic carbon (DOC) release by krill during January and February is 202 μmol g\(^{-1}\) h\(^{-1}\) (Ruiz-Halpern et al. 2011), but the distinct release mechanisms of assimilated vs. unassimilated DOC are unassessed for krill, and therefore excretion rates remain unknown. The respiratory cost of swimming also is not trivial (Swadling et al. 2005) but similarly is excluded from our carbon budget due to uncertainty. As a consequence of our conservative ingestion estimate, phytoplankton may account for a smaller dietary fraction than the 14–35% reported here.

**Phytoplankton grazing**

Repeated gut fluorescence measurements provided valuable insight into the regional variability, allometry, and functional response of krill grazing. Chl \(a\) grazing rates were intermediate compared to those from two previous studies of juvenile krill using gut fluorescence. Our values (0.1–2.6 μg ind\(^{-1}\) d\(^{-1}\)) were lower than those measured by Bernard et al. (2012) during January along the WAP (1.4–6.6 μg ind\(^{-1}\) d\(^{-1}\)). Grazing rates...
in that study may have been higher due to the inclusion of larger juvenile animals (age-class 2) and were particularly elevated south of Palmer Station (Bernard et al. 2012). In contrast, our mean of 0.7 $\mu$g ind$^{-1}$ d$^{-1}$ was similar to measurements for juvenile krill in the eastern Atlantic sector at 56–60$^\circ$S during December and January (range: 0.5–0.6 $\mu$g ind$^{-1}$ d$^{-1}$) (Pakhomov and Froneman 2004). No significant change in grazing rate (and the order-of-magnitude decline in mass-specific grazing) over the size range considered in our study supported the use of a single functional response for krill from age-class 1.

Unlike in some prior studies, we found a functional response in our krill feeding experiments that indicates grazing saturates as Chl $a$ concentration increases. This finding likely reflects the use of natural plankton communities at natural densities to mimic in situ prey conditions. Prior studies show grazing continues to increase at Chl $a$ concentrations as high as $\sim$ 20 $\mu$g L$^{-1}$, which may be due to artificial concentration of large prey (Price et al. 1988; Atkinson and Snyder 1997; Meyer et al. 2010). At least one previous study also reported a type III functional response for E. superba (Boyd et al. 1984), and type III responses are expected for active feeders such as krill (Agersted and Nielsen 2016; Kiørboe et al. 2018), which seek out prey and reduce feeding effort in the absence of prey (Hamner et al. 1983). While clearance rates may be depressed within experimental containers (Price et al. 1988; and see Supplementary Discussion), our experimental volume (18 liters) was relatively high for a feeding study, and the small size of the animals in our study likely reduced container effects compared to prior work with adult krill.

Phytoplankton grazing (< 1–9% krill body carbon d$^{-1}$) was insufficient to meet juvenile krill carbon demand. Two previous studies measuring gut fluorescence found similar results. During January in the eastern Atlantic sector of the Southern Ocean, daily phytoplankton grazing was < 2% of krill body carbon except at a single ice-edge station where a bloom was underway (Perissinotto et al. 1997). In addition, mean daily
phytoplankton grazing was 0.5% of body carbon for juvenile krill during January along the WAP (Bernard et al. 2012). At the high end, experimental incubations using sea-ice derived algae found that daily phytoplankton grazing was 10% of body carbon when $C_{\text{phyto}}$ concentration was 600 $\mu$g L$^{-1}$ but dropped below 4% of body carbon at a $C_{\text{phyto}}$ level of $\sim$ 300 $\mu$g L$^{-1}$ (Meyer et al. 2010). Thus, our finding of inadequate phytoplankton consumption to support krill carbon demand is supported by previous studies and a range of methodologies.

There is a clear mismatch between the size-selectivity of krill and the natural size distribution of available autotrophic prey near Palmer Station. Imaging flow cytometry showed that > 60% of natural biovolume was concentrated in nano-sized particles that krill fed upon 50–75% less efficiently compared to larger particles. Small-celled phytoplankton persistently dominated across two field seasons at Palmer Station, and mean cell size decreased from late spring to early autumn (Nardelli et al. 2023). Our size-specific clearance rates (1–4.5 L ind$^{-1}$ d$^{-1}$) also agree well with a previous experimental study of similarly sized krill (18–23 mm) and natural plankton prey that reports mean clearance rates of 1 L ind$^{-1}$ d$^{-1}$ on prey < 20 $\mu$m and 2–3 L ind$^{-1}$ d$^{-1}$ on prey > 20 $\mu$m (Meyer and El-Sayed 1983).

**Trophic position and dietary composition**

The seasonal carbon budget of krill growth, respiration, and grazing allowed calculation of a minimum feasible TP independent of stable isotope data. This carbon budget suggested phytoplankton comprised up to 35% seasonal carbon ingestion (Table 1). We then assumed the 65% of unaccounted prey occupy the minimum heterotrophic TP of 2 and calculated krill TP according to Pauly and Palomares (2005). The seasonal carbon budget thus suggests a minimum krill TP of 2.65.

The mean $TP_{\text{Ala}}$ of juvenile krill was 3.1 ± 0.4 and reveals the importance of heterotrophic protists in the coastal Antarctic food web. $TP_{\text{Ala}}$ exceeded 2.65 for 87% of samples while $TP_{\text{Glu}}$ (mean = 2.3 ± 0.2) was always less than 2.65. Only alanine isotopically detects trophic steps through heterotrophic protists (Gutiérrez-Rodríguez et al. 2014; Décima et al. 2017), which are the dominant grazers in the WAP ecosystem (Garzio et al. 2013; Sailley et al. 2013). $TP_{\text{Ala}}$ thus accounted for important trophic links and revealed that juvenile krill were secondary consumers during summer near Palmer Station. Substantial uncertainty remains when estimating TP from $\delta^{15}$N of amino acids. For example, isotopic composition varies within individuals, and our use of muscle tissue likely elevated TP estimates compared to the entire krill body (Schmidt et al. 2004).

Two prior studies report amino acid $\delta^{15}$N values for krill abdominal muscle, revealing regional and ontogenetic variability in food web structure. Krill in the Scotia Sea and near South Georgia during January–February had the highest $^{15}$N enrichment in glutamic acid and alanine relative to phenylalanine (Schmidt et al. 2006) (Supplementary Fig. S11), possibly attributable to increased regional abundance of mesozooplankton prey (Yang et al. 2022) and the inclusion of larger krill, which occupy higher trophic levels (Polito et al. 2013). Female krill collected near the South Shetland Islands in late summer (March) exhibited higher relative $^{15}$N enrichment in glutamic acid compared to alanine when both were normalized to $\delta^{15}$N$_{\text{Phe}}$ (Schmidt et al. 2004) (Supplementary Fig. S11), suggesting increased importance of metazoans relative to heterotrophic protists. This finding for adult krill is again consistent with an ontogenetic shift in TP relative to juvenile krill in our study.

Our carbon budget and stable isotope approaches both suggest heterotrophic prey were major dietary components in all years, particularly when mesozooplankton biomass was elevated. Heterotrophic material constituted on average 79% (standard deviation = 21%) of stomach content mass for krill collected in the Lazarev Sea (January) and near South Georgia (February–March) (Perissinotto et al. 2000). Much of the stomach contents of krill is visually unidentifiable, but heterotrophic protists can dominate the identified portion (Schmidt et al. 2006). Copepods are often relatively rare in identified

---

**Table 1.** Summary of juvenile krill trophic role and prey availability during three consecutive field seasons. Annual mean, standard deviation, and sample size ($n$) are reported for TP calculated using glutamic acid ($TP_{\text{Glu}}$) and alanine ($TP_{\text{Ala}}$). The annual mean and range of estimates are reported for dietary fractions, which should be considered exploratory due to substantial uncertainty. The carbon budget-based phytoplankton dietary fraction is derived from Fig. 5. Annual mean, standard deviation, and sample size are reported for Chl $\alpha$ and mesozooplankton dry weight measurements (integrated from 0 to 50 m) at Stas. B and E.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$TP_{\text{Glu}}$</td>
<td>2.2 ± 0.1 ($n$ = 9)</td>
<td>2.4 ± 0.1 ($n$ = 10)</td>
<td>2.5 ± 0.1 ($n$ = 4)</td>
<td>2.3</td>
</tr>
<tr>
<td>$TP_{\text{Ala}}$</td>
<td>2.8 ± 0.4 ($n$ = 9)</td>
<td>3.2 ± 0.3 ($n$ = 10)</td>
<td>3.3 ± 0.2 ($n$ = 4)</td>
<td>3.1</td>
</tr>
<tr>
<td>% Metazoans (stable isotopes)</td>
<td>14 (13–15)</td>
<td>35 (32–38)</td>
<td>46 (42–50)</td>
<td>32</td>
</tr>
<tr>
<td>% Heterotrophic protists (stable isotopes)</td>
<td>36 (25–55)</td>
<td>38 (21–56)</td>
<td>31 (14–44)</td>
<td>35</td>
</tr>
<tr>
<td>% Phytoplankton (stable isotopes)</td>
<td>50 (29–62)</td>
<td>27 (6–47)</td>
<td>22 (5–44)</td>
<td>33</td>
</tr>
<tr>
<td>% Phytoplankton (carbon budget)</td>
<td>23 (14–31)</td>
<td>26 (17–35)</td>
<td>22 (14–30)</td>
<td>24</td>
</tr>
<tr>
<td>Chl $\alpha$ (mg m$^{-2}$)</td>
<td>67 ± 38 ($n$ = 76)</td>
<td>96 ± 77 ($n$ = 84)</td>
<td>69 ± 54 ($n$ = 58)</td>
<td>77</td>
</tr>
<tr>
<td>Mesozooplankton dry weight (mg m$^{-2}$)</td>
<td>14 ± 9 ($n$ = 40)</td>
<td>19 ± 11 ($n$ = 61)</td>
<td>23 ± 10 ($n$ = 16)</td>
<td>19</td>
</tr>
</tbody>
</table>
that are specific to a region where increased phytoplankton production may allow krill to occupy a higher TP. In addition, krill can readily feed near the seafloor in shallow coastal regions where vertical migration is a less-effective escape mechanism for copepods (Atkinson et al. 1999; Schmidt et al. 2011). Therefore, krill could be secondary consumers throughout the Southern Ocean, but local conditions may make it more likely at our study site.

**Conclusions**

Heterotrophic prey surpassed phytoplankton contributions to juvenile krill diet across three summer field seasons near Palmer Station. Coastal waters are the most productive along the WAP (Vernet et al. 2008; Brown et al. 2019), phytoplankton productivity is highest during summer (Clarke et al. 2008), and juvenile krill are expected to rely less on omnivory compared to larger individuals (Polito et al. 2013; Schmidt et al. 2014). This local result was therefore surprising, and we posit that krill are secondary consumers more broadly. We thus encourage investigation into krill-centric food web structure at a circumpolar scale and across life stages. Controlled experimentation to define TEF values for the pelagic Antarctic food web would be valuable for re-analysis of our data and CSIA-AA data yet to be collected. A comparative, multi-taxa CSIA-AA approach could prove valuable, and data

---

**Population-level implications**

Current hypotheses underlying krill population dynamics should be re-evaluated within a framework that emphasizes omnivory. A simulation model including only autotrophic prey suggests that competition-driven starvation of larval and juvenile krill during autumn is the key driver of regional population cycles along the WAP (Ryabov et al. 2017). Our results also demonstrate that phytoplankton is insufficient to support juvenile krill from summer into autumn, but autumn starvation may be reduced when juvenile krill feed substantially on heterotrophic prey. Thus, future models should include heterotrophic prey. Empirical relationships show that larval abundance and subsequent recruitment are positively related to phytoplankton biomass (Loeb et al. 2009; Saba et al. 2014). One interpretation is that higher reproductive output and overwinter survival are due to increased phytoplankton (particularly diatom) consumption. We do not rule this out but note that elevated phytoplankton biomass also coincides with elevated abundance of heterotrophic prey, including copepods and microzooplankton (Loeb et al. 2009; Garzio and Steinberg 2013; Gleiber 2014). Unraveling the drivers of highly variable krill recruitment should inform regional krill fishery management (Meyer et al. 2020), which currently is insufficient to permit expansion or to protect dependent predators (Brooks et al. 2022; Watters and Hinke 2022).

Over multi-decadal scales, climate-driven changes in phytoplankton may be important direct and indirect drivers of shifting krill biogeography. As southern shelf waters of the WAP shifted from perennial to seasonal sea ice coverage from the 1990s to 2010s, phytoplankton biomass and cell size increased (Montes-Hugo et al. 2009; Rogers et al. 2020). Over the same period, an important krill spawning area developed in southern WAP waters (Atkinson et al. 2022). Years of extended sea-ice coverage and high, diatom-dominated productivity likely result in greater phytoplankton consumption by krill, because krill can most efficiently graze large diatoms that are specifically associated with ice-edge phytoplankton blooms (Lin et al. 2021). As sea ice continues to decline, phytoplankton biomass and cell size are expected to decrease in this region (Montes-Hugo et al. 2009; Brown et al. 2019; Rogers et al. 2020), likely increasing the number of trophic steps between phytoplankton and krill. The physiological impacts of changing krill diet composition require further study. For example, increased diatom consumption promotes immediate growth and reproduction while a copepod-rich diet favors longer-term storage for overwintering (Hagen et al. 2007; Bernard et al. 2022). Clarifying the connections from diet to physiology to population dynamics will inform krill fishery management amidst unprecedented environmental change.

**Generality of findings**

It is worth considering whether krill feasibly can be secondary consumers given their immense biomass in the high nutrient, low Chl a Southern Ocean. To do this, we compiled circum-polar productivity estimates of krill and their major prey (Supplementary Table S2; Supplementary Discussion). Annual krill productivity is 6–11% of combined microzooplankton plus calanoid copepod production (Supplementary Table S2). Given transfer efficiency between consumers is estimated at 3.5–25.5% (mean = 12%) in polar oceans (Eddy et al. 2021), krill could occupy a full trophic level above microzooplankton and copepods. Indeed, balanced food web models for South Georgia (Hill et al. 2012) and the northern WAP coast (Sailley et al. 2013) demonstrate krill could realistically feed on < 50% phytoplankton in both regions. But importantly, mean annual primary productivity along the coastal WAP (180 g C m⁻² yr⁻¹) (Ducklow et al. 2013) is triple the Southern Ocean mean (57 g C m⁻² yr⁻¹) (Arrigo et al. 2008), and thus our findings are specific to a region where increased phytoplankton production may allow krill to occupy a higher TP. In addition, krill can readily feed near the seafloor in shallow coastal regions where vertical migration is a less-effective escape mechanism for copepods (Atkinson et al. 1999; Schmidt et al. 2011). Therefore, krill could be secondary consumers throughout the Southern Ocean, but local conditions may make it more likely at our study site.
may be harvested from frozen or preserved sample collections (Hetherington et al. 2019; Swalethorp et al. 2020). Time series would be particularly useful when paired with krill population demographics, physiological measurements, and prey data (Walsh et al. 2020; Steinke et al. 2021). Future studies should look beyond the phytoplankton–krill–predator food chain to interrogate complexity in the changing Southern Ocean food web.

Data availability statement
The data that support the findings of this study are available in the supplementary material of this article or will be made available in the Environmental Data Initiative Data Portal or at reasonable request of the corresponding author.

References
Conroy et al.

Omnivory by Antarctic krill


Saba, G. K., and others. 2014. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5: 4318. doi:10.1038/ncomms5318


Acknowledgments
Thank you to the Antarctic Support Contract personnel at Palmer Station for their scientific and logistical support. We thank Andrew Corso, Ashley Hann, Kharis Schrage, Leigh West, Rachael Young, and PAL LTER Station for their scientific conclusions, and recommendations are those of the authors and do not necessarily reflect the views of Virginia Sea Grant, NOAA, or the U.S. Department of Commerce.

Conflict of interest
The authors have no conflicts of interest to declare.