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The West Antarctic Peninsula (WAP) has experienced significant increases in 

atmospheric and ocean temperatures since the 1950s, with subsequent decreases in winter 

sea ice extent and duration. Concurrently, phytoplankton biomass has decreased along the 

northern portion of the peninsula, associated with a shift from large-celled diatoms to 

smaller-celled cryptophytes and mixed flagellates, and krill populations previously 

located north of the peninsula have shifted their range south to coastal WAP waters. 

Despite these changes, a comprehensive understanding of the seasonal dynamics of 

coastal Antarctic phytoplankton and krill remains in question. Filling this gap in our 

understanding is crucial for contextualizing long-term change. This dissertation is 

focused on understanding the austral summer seasonal dynamics of plankton ecology at 

Palmer Station, Antarctica, and the resulting implications for predator foraging.  

Chapter 1 provides overall context for the observed changes and implications for 

ecology of the WAP. Chapters 2 and 3 document phytoplankton seasonal succession and 

diversity using data from samples analyzed with an Imaging FlowCytobot. In Chapter 2, 

a convolutional neural network was built to automatically sort collected images of WAP 

phytoplankton, and in Chapter 3 the neural network was applied to two field seasons of 

samples collected from Palmer Station. The findings highlight remarkable similarities in 
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phytoplankton seasonal succession between years despite significant differences in 

annual sea ice extent and total phytoplankton biomass. In both years, there was a tight 

connection between sea ice retreat and bloom initiation timing and a decrease in cell size 

from late spring to early autumn associated with increases in meteoric meltwater.   

In Chapter 4, 12 years of autonomous underwater glider data from the Palmer 

region were paired with a photoacclimation model to characterize phytoplankton growth 

and bloom phenology from summer to early autumn. Results showed a distinct phase 

shift at the beginning of February caused by increased wind-mixing of sedimentary iron 

to surface waters, which increased growth rates and cellular chlorophyll concentrations, 

diluted predator concentrations reducing grazing pressure, and led to a significant autumn 

bloom.  

In Chapter 5, bi-weekly acoustic surveys were conducted to evaluate seasonal 

changes in krill availability in adjacent Adélie and gentoo penguin foraging regions near 

Palmer Station. From summer to autumn, results showed a migration of adult krill 

inshore and an increase in diel vertical migration behavior. Additionally, there were 

significantly different oceanographic properties and krill swarming behaviors in Adélie 

and gentoo foraging regions only 10 km apart, suggesting a potential driver of differences 

in local penguin foraging behavior between species. 

Chapter 6 summarizes the main findings of the dissertation and suggests 

directions for future research. Ultimately, this dissertation improves our understanding of 

summer seasonal phytoplankton and krill dynamics, providing context for predicting how 

coastal Antarctic ecosystems might respond and adapt to continued environmental 

change.  



 

 iv 

Acknowledgments 
 
 
 First and foremost, I would like to thank my advisor Dr. Oscar Schofield for being 

an amazing mentor and friend. From our first conversation, your dedication to your 

students was evident, and I could not have asked for a more supportive environment in 

which to build my research foundation. You have an incredible way of guiding students 

while still allowing them to build independence and confidence in their skills and 

abilities. I really appreciate your willingness to let me pursue my own scientific questions 

and interests, even if they were sometimes a bit outside your expertise. I have truly 

enjoyed working with you, and I hope our professional paths cross again in the future! 

 Thank you also to my dissertation committee, Grace Saba, Josh Kohut, and Doug 

Nowacek, for your additional support and guidance. Your different backgrounds and 

perspectives helped me to think more broadly about my research, which not only 

improved my dissertation but also helped me to learn and grow as a scientist.  

  I am grateful for the folks in the Oceanography department that supported me 

throughout my PhD. Thank you to all the professors that challenged me in classes, to the 

graduate program directors during my tenure, Yair Rosenthal and John Wilkin, to our 

faithful department chair, Oscar Schofield, and to all the administrative specialists who 

helped me navigate logistics throughout my time at Rutgers. I am also appreciative of the 

RU COOL group, including the glider team and technicians that helped me countless 

times throughout my research, and all the professors and students that made my Thursday 

mornings a little brighter throughout the pandemic. DMCS is such a warm and supportive 

community amidst a large university, and I am thankful to have found a home there.  



 

 v 

Thank you to all the members of the Schofield lab I overlapped with during my 

time at Rutgers, including Nicole C., Filipa, Mike B., Quintin, and Michael C. Having 

successful role models ahead of me helping to guide me through the graduate school 

process was so valuable, and I am excited to see the work that comes out of the lab in the 

coming years. Thanks especially to Nicole Waite for all your hard work to keep the lab 

running – you are truly an inspiration! It was so easy and fun to work with you, and I 

really appreciate all your help analyzing samples for my dissertation. 

I feel incredibly lucky that I had the opportunity to work for the Palmer LTER. I 

was originally drawn to the project for the science, but the people are what made my 

experience so special. I learned so much from every PI, grad student, post doc and 

technician I had the privilege of working with, all while having a ton of fun. Additional 

thanks to all the Palmer Station personnel that supported my science during my four trips 

to Antarctica. Palmer felt like a second home during graduate school thanks to all the 

friendly and supportive folks who work there.    

I had an atypical graduate school experience in that I split my time between three 

places: Rutgers, Antarctica, and VIMS. I have made some truly incredible friends in all 

three places (too many to list!), and they all played a role in supporting me throughout 

my PhD. It is great to have friends who can talk science but also know how to have fun. I 

am so grateful for all the adventures we shared and I can’t wait for future adventures!  

A huge thank you to my family for being my cheerleaders through this endeavor. 

Nick and Neesha – thanks for being science role models and providing a great example of 

how to maintain healthy work-life balance. Sophie – your strength and resilience inspire 

me to push through my own challenges. Thanks for being a good friend and listener 



 

 vi 

during stressful moments of grad school. Mom and Dad – thank you for your endless love 

and encouragement, I feel so lucky every day to have parents as supportive as you!  

And finally, to Jack – I feel so fortunate that research in Antarctica brought us 

together. Thanks for always knowing how to make me laugh and supporting me through 

all the ups and downs over the last 5 years, I can’t wait for the next chapter! 

 

Funding: A big thank you to my funding sources throughout my PhD including internal 

Rutgers funding (Rutgers Institute of Earth, Ocean, and Atmospheric Sciences graduate 

fellowship), external research funding (NSF Palmer Antarctica Long-Term Ecological 

Research project (PLR-1440435), NASA (19-IDS19-0085), and the Teledyne Webb 

Graduate Research Fellowship), and travel funding for conferences (MTS Travel Award). 



 

 vii 

Table of Contents 
 

Abstract of the Dissertation ................................................................................................ ii 
Acknowledgments .............................................................................................................. iv 

List of tables .........................................................................................................................x 

List of figures ..................................................................................................................... xi 

1. Introduction ..................................................................................................................1 

2. Developing a convolutional neural network to classify phytoplankton images 
collected with an Imaging FlowCytobot along the West Antarctic Peninsula .......6 

2.1    Abstract 6 

2.2    Introduction 7 

2.3    Methods 9 
2.3.1    Phytoplankton image collection and processing ............................................ 9 
2.3.2    Model development ....................................................................................... 10 
2.3.3    Model validation ........................................................................................... 11 
2.3.4    Model application ......................................................................................... 11 
2.3.5    Sea ice characterization ................................................................................ 12 

2.4    Results 12 
2.4.1    Model accuracy ............................................................................................. 12 
2.4.2    Phytoplankton seasonal succession at Palmer Station ................................. 13 
2.4.3    Sea ice dynamics ........................................................................................... 14 

2.5    Discussion 14 
2.5.1    Model development: successes and challenges ............................................ 14 
2.5.2    Phytoplankton seasonal succession at Palmer Station ................................. 17 
2.5.3    Conclusions and next steps ........................................................................... 19 

2.6    Acknowledgments 21 

2.7    Tables 22 

2.8    Figures 23 

3. Coastal phytoplankton seasonal succession and diversity on the West Antarctic 
Peninsula .....................................................................................................................26 

3.1    Abstract 26 

3.2    Introduction 27 

3.3    Methods 30 
3.3.1    Sample collection .......................................................................................... 30 
3.3.2    Phytoplankton pigment analysis ................................................................... 31 



 

 viii 

3.3.3    Phytoplankton species and size analysis ....................................................... 32 
3.3.4    Defining phytoplankton seasonal succession phases .................................... 35 
3.3.5    Nutrient analyses .......................................................................................... 36 
3.3.6    Meltwater composition .................................................................................. 37 

         3.3.7    Water column stability...................................................................................37 
3.3.8    Weather data ................................................................................................. 38 
3.3.9    Sea ice data ................................................................................................... 38 
3.3.10    Statistical analyses ...................................................................................... 39 

3.4    Results 39 
3.4.1    HPLC versus IFCB taxonomy comparison ................................................... 39 
3.4.2    Interannual differences ................................................................................. 40 
3.4.3    Spring-autumn environmental trends ........................................................... 42 
3.4.4    Spring-autumn phytoplankton succession patterns ...................................... 43 

3.5    Discussion 45 
3.5.1    Drivers of interannual differences in phytoplankton biomass and 

composition ................................................................................................... 46 
3.5.2    Drivers of phytoplankton seasonal succession ............................................. 49 
3.5.3    HPLC versus IFCB-derived abundance and taxonomy ................................ 53 

3.6    Acknowledgments 58 

3.7    Tables 60 

3.8    Figures 63 

3.9    Supplementary tables 71 

3.10    Supplementary figures 73 

4. Assessing ecological drivers of phytoplankton bloom phenology in coastal 
Antarctica ...................................................................................................................76 

4.1    Abstract 76 

4.2    Introduction 77 

4.3    Methods 79 
4.3.1    Glider data collection ................................................................................... 79 
4.3.2    Mixed layer depth calculations ..................................................................... 81 
4.3.3    Palmer Station weather data ........................................................................ 82 
4.3.4    Phytoplankton division, accumulation, and loss rates .................................. 82 
4.3.5    Station E data ................................................................................................ 85 
4.3.6    Climatology calculations .............................................................................. 86 
4.3.7    Statistical analyses ........................................................................................ 86 

4.4    Results 86 
4.4.1    Modeled Cphyto ............................................................................................... 86 
4.4.2    Seasonal climatology .................................................................................... 87 

4.5    Discussion 89 
4.5.1    Seasonal bloom phenology ........................................................................... 89 



 

 ix 

4.5.2    Phytoplankton specific division and loss rates ............................................. 92 
4.5.3    Relationship between Cphyto and bbp(470) ..................................................... 94 
4.5.4    Conclusion .................................................................................................... 97 

4.6    Acknowledgments 99 

4.7    Tables 100 

4.8    Figures 102 

4.9    Supplementary Figures 109 

5. Krill availability in adjacent Adélie and gentoo penguin foraging regions near 
Palmer Station, Antarctica ......................................................................................110 

5.1    Abstract 110 

5.2    Introduction 111 

5.3    Methods 114 
5.3.1    Survey design .............................................................................................. 114 
5.3.2    Acoustic data collection .............................................................................. 115 
5.3.3    Krill net sampling ....................................................................................... 115 
5.3.4    Acoustic data processing ............................................................................ 116 
5.3.5    Environmental data ..................................................................................... 119 
5.3.6    Statistical analysis ...................................................................................... 120 

5.4 Results 123 
5.4.1    Krill population characteristics .................................................................. 123 
5.4.2    Spatial variability ........................................................................................ 123 
5.4.3    Spatiotemporal variability in krill density .................................................. 124 
5.4.4    Seasonal patterns ........................................................................................ 125 

5.5    Discussion 127 
5.5.1    Krill population characteristics .................................................................. 127 
5.5.2    Spatial variability ........................................................................................ 128 
5.5.3    Spatiotemporal variability in krill density .................................................. 130 
5.5.4    Seasonal patterns ........................................................................................ 132 
5.5.5    Conclusions ................................................................................................. 134 

5.6    Acknowledgments 136 

5.7    Tables 137 

5.8    Figures 139 

5.9    Supporting Information 146 

6. Summary and Conclusions .....................................................................................150 

7. Acknowledgment of previous publications ............................................................154 

8. References .................................................................................................................155 

 



 

 x 

List of tables 
 
 
Chapter 2 

Table 1: Confusion matrix for broad taxonomic groups……………………………….....22 

Table 2: Sea ice characterization………………………………………………....…........22 

 

Chapter 3 

Table 1: Compiled size metrics for each taxonomic group…………………...…………..60 

Table 2: Annual sea ice indices…………………………………………………………...60 

Table 3: Interannual differences in environmental variables……………………………..61 

Table 4: Interannual differences in phytoplankton variables……………………………..62 

Supplementary table 1: Interannual differences in phytoplankton taxonomy…………….71 

 

Chapter 4 

Table 1: Glider deployment information………………………………………..…...….100 

 

Chapter 5 

Table 1: Differences between Adélie and gentoo penguin foraging regions………….....137 

Table 2: Differences in krill variables across survey legs in each foraging region………138 

Table S1: Differences in environmental variables across survey legs in each 

foraging region……………………………………………………………..…...146 

Table S2: Temporal change of variables inshore and offshore in the Adélie region……..147 

Table S3: Temporal change of variables inshore and offshore in the gentoo region…….148 

Table S4: Temporal change of variables within each foraging region………………..…149 



 

 xi 

List of figures 
 
 
Chapter 2 

Figure 1: Methods comparison of phytoplankton seasonal succession………………..….23 

Figure 2: Diatom seasonal diversity…………………………………………………..….24 

Figure 3: Percent sea ice coverage………………………………………………….…….25 

 

Chapter 3 

Figure 1: Map of the West Antarctic Peninsula and Palmer region…………………….…63 

Figure 2: Historical timeseries for number of sea ice days and chlorophyll-a………….…64 

Figure 3: Seasonal HPLC-derived chlorophyll-a and IFCB-derived phytoplankton 

biovolume for each taxonomic group………………………………………........65 

Figure 4: Daily percent sea ice cover and percent sea ice melt………………………..…..66 

Figure 5: Seasonal timeseries of environmental variables………………………………..67 

Figure 6: Seasonal timeseries of nutrient data……………………………………...……..68 

Figure 7: Seasonal timeseries of the Shannon Diversity Index……………………...……69 

Figure 8: Diatom seasonal diversity………………………………………………….…..69 

Figure 9: Seasonal decrease in phytoplankton median cell diameter……………………..70 

Supplementary figure 1: Comparison of live versus preserved IFCB samples……….…..73 

Supplementary figure 2: Phytoplankton successional phase divisions………………...…74 

Supplementary figure 3: Linear relationship between HPLC-derived chlorophyll-a and 

IFCB-derived phytoplankton biovolume………………………….…….…….….74 

Supplementary figure 4: Linear relationship between HPLC-derived chlorophyll-a and 

IFCB-derived phytoplankton biovolume for each taxonomic group……………..75 

 

Chapter 4 

Figure 1: Map of Palmer Deep region and all glider profiles………………………..…102 

Figure 2: Seasonal coverage of glider deployments………………………………….….103 

Figure 3: Daily bbp(470) versus PaM-derived Cphyto………………………………….…104 

Figure 4: Seasonal climatologies of environmental variables………………………......105 



 

 xii 

Figure 5: Monthly differences in environmental climatologies………………….…..…106 

Figure 6: Seasonal climatologies of phytoplankton variables………………...………....107 

Figure 7: Monthly differences in phytoplankton climatologies…………………………108 

Supplementary figure 1: Linear relationship between solar irradiance and PAR…….....109 

Supplementary figure 2: Annual summer timeseries for chlorophyll-a, Cphyto, 

and bbp(470)…………………………………………………………………......109 

 

Chapter 5 

Figure 1: Map of penguin foraging regions and acoustic surveys……………………….139 

Figure 2: Euphausia superba monthly length frequency distributions……….…..…….140 

Figure 3: Regional differences in environmental variables……………………………...141 

Figure 4: Regional differences in krill variables…………………………………...……142 

Figure 5: Krill variable differences across survey legs in the Adélie foraging region...…143 

Figure 6: Seasonal spatiotemporal trends in krill biomass……………………...……….144 

Figure 7: Summer timeseries of physical and biological properties in Adélie and gentoo 

 penguin foraging regions………………………………………………….….…145



 

 

1 

 

1. Introduction 
 
 

The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem 

characterized by large summer phytoplankton blooms that support abundant krill and top 

predator populations (Ross et al. 1996). A bathymetric gradient from the coast out to the 

continental slope, deep submarine canyons that cut across the shelf, and a network of 

coastal islands set up complex physical dynamics that drive the abundance and 

distribution of these organisms (Fraser and Trivelpiece 1996; Santora and Reiss 2011; 

Kavanaugh et al. 2015). In addition, the life histories of many marine species are highly 

synchronized with sea ice seasonality (Eicken 1992). 

The WAP is one of the fastest warming regions on Earth, with winter air and 

surface ocean temperatures increasing by 6°C and >1°C, respectively, since 1951 

(Meredith and King 2005; Turner et al. 2005; Cook et al. 2016). In response, >90% of 

marine glaciers are currently in retreat, and the annual ice season duration decreased by 

3.3 months from 1979 to 2011 (Stammerjohn et al. 2012; Cook et al. 2016). Additionally, 

the Southern Annular Mode (SAM) has become more positive during austral summer, 

contracting the westerly wind band around Antarctica (Thompson and Solomon 2002). 

This strengthens warm westerly winds along the WAP, increases precipitation, and 

increases the amount of warm (~2°C) Upper Circumpolar Deep Water (UCDW) that is 

upwelled onto the continental shelf (Thomas et al. 2008; Martinson and McKee 2012). 

All of these factors set up a latitudinal climate gradient along the WAP, with warm, 

moist, sub-polar conditions propagating south to replace cold, dry, polar conditions 

(Ducklow et al. 2013). The Palmer Deep submarine canyon, located near the U.S. 
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research base Palmer Station on Anvers Island, is in the transition zone between polar 

and subpolar climates, making it an ideal location to study ecosystem changes. 

Along the WAP, phytoplankton show strong interannual and regional variability 

timed with sea ice retreat and increased light availability (Vernet et al. 2008). Large 

diatom-dominated spring blooms are initiated when solar warming and sea ice melt 

stabilize the upper water column and nutrients are abundant (Mitchell and Holm-Hansen 

1991; Prézelin et al. 2000; Venables et al. 2013). From 1978 to 2006, decreased sea ice 

extent and increased wind speeds north of Palmer Station in January led to deeper vertical 

mixing and increased light limitation, resulting in significant decreases in mean 

phytoplankton biomass (Montes-Hugo et al. 2009). From 2006 to 2015, the southern 

boundary of decreasing chlorophyll trends shifted roughly 400 km south, indicating that 

phytoplankton could be declining along the entire WAP by 2030 (Rogers et al. 2020). 

Decreases in biomass are accompanied by a shifts to a smaller fraction of large cells, 

including diatoms (Montes-Hugo et al. 2009). It is hypothesized that this is due to 

increased proportions of small-celled cryptophytes, concurrent with an increase in low 

salinity meltwater along the coast (Moline et al. 2004; Mendes et al. 2013; Schofield et 

al. 2017). Future expansion of low salinity surface waters are predicted to continue 

increasing the prevalence of smaller-celled phytoplankton communities along the WAP 

(Moline et al. 2004; Li et al. 2009; Hernando et al. 2015). 

Antarctic krill (Euphausia superba) are the main trophic link between 

phytoplankton and top predators in this region, and interannual patterns in abundance and 

recruitment are tightly coupled to phytoplankton biomass (Atkinson et al. 2004; Saba et 

al. 2014). Krill feeding appendages filter particles >10 microns, thus grazing efficiencies 
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are higher when larger particles (e.g., diatoms) are present (McClatchie and Boyd 1983). 

Despite changes in the environment and phytoplankton community, krill abundance south 

of Palmer Station remained relatively stable from 1993 to 2013 (Steinberg et al. 2015). 

However, from 1976 to 2016 there was a krill abundance decline in the southwest 

Atlantic sector, and a southward range contraction that concentrated krill distribution 

along the WAP shelf (Atkinson et al. 2019). Further warming and melting could cause 

additional range contractions and decreased krill biomass further south along the WAP 

(Klein et al. 2018).  

With sea ice loss and increased snowfall, polar, ice-obligate Adélie penguin 

(Pygoscelis adeliae) populations with well-established (hundreds to thousands of years; 

Emslie 2001) colonies near Palmer Station have declined by ~90% since the 1970s, while 

sub-Antarctic, ice-intolerant gentoo penguins (Pygoscelis papua) established colonies 

near Palmer Station in 1994 and have been increasing ever since (Fraser et al. 2020). 

Krill are the main food source for many predators along the WAP, including seabirds, 

whales, and seals. Reduced krill biomass and recruitment success could increase foraging 

efforts and decrease breeding success for these animals (Fraser and Hofmann 2003; 

Trathan et al. 2007; Chapman et al. 2011), causing further declines in Adélie penguin 

populations. 

Understanding the seasonal dynamics of coastal Antarctic phytoplankton and krill 

is crucial for predicting how future environmental change will impact food web structure. 

Seasonal changes in the environment (e.g., solar irradiance, wind speed, sea ice retreat, 

meltwater inputs, depth of the surface mixed layer, nutrient availability) impact the 

timing and magnitude of phytoplankton blooms, patterns in phytoplankton species 
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succession, and cell size dynamics (Li et al. 2009; Hernando et al. 2015; Behrenfeld et al. 

2017, 2021a). While environmental and phytoplankton dynamics impact krill recruitment 

on interannual scales (Saba et al. 2014), seasonal abundance and distribution of krill are 

primarily determined by their life cycles. From summer to autumn, adult krill migrate 

from the shelf break to inshore troughs and canyons, while juvenile krill remain in coastal 

waters (Siegel et al. 2013; Conroy et al. 2020). Adult krill also migrate deeper in the 

water column in autumn to utilize deep food sources (Cleary et al. 2016; Reiss et al. 

2017), while larval and juvenile krill remain shallow to assess under-ice algae (Bernard et 

al. 2018; Walsh et al. 2020). Seasonal changes in lower trophic levels ripple up the food 

web to impact predators. For example, Adélie and gentoo penguins appear to time peak 

chick fledging with seasonal deepening of krill biomass (Nardelli et al. 2021a), likely 

because obtaining high krill yields during periods of peak chick growth is critical for 

chick survival and shallow krill mean reduced foraging efforts. 

The overarching goal of this dissertation was to assess the austral summer 

seasonal dynamics of plankton ecology at Palmer Station and the resulting implications 

for predator foraging. Chapters 2 and 3 utilized new imaging technology to assess 

phytoplankton diversity and community dynamics. In Chapter 2, a convolutional neural 

network was built to automatically sort millions of collected phytoplankton images along 

the WAP, and in Chapter 3 this neural network was applied to data from Palmer Station 

to describe phytoplankton seasonal succession patterns and their environmental drivers. 

Chapter 4 builds on this understanding of seasonal phytoplankton trends using 12 years 

of autonomous underwater glider data from the Palmer region to model phytoplankton 

bloom phenology and determine connections to bottom-up and top-down ecological 
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drivers. Chapter 5 uses acoustic technology to evaluate seasonal changes in krill 

availability in the Palmer region and the foraging implications for local Adélie and 

gentoo penguin colonies. Finally, Chapter 6 summarizes the main findings of the 

dissertation and suggests directions for future research.  
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2. Developing a convolutional neural network to classify 
phytoplankton images collected with an Imaging 
FlowCytobot along the West Antarctic Peninsula 

 
 
2.1    Abstract 

High-resolution optical imaging systems are quickly becoming universal tools to 

characterize and quantify microbial diversity in marine ecosystems. Automated detection 

systems such as convolutional neural networks (CNN) are often developed to identify the 

immense number of images collected. The goal of our study was to develop a CNN to 

classify phytoplankton images collected with an Imaging FlowCytobot for the Palmer 

Antarctica Long-Term Ecological Research project. A medium complexity CNN was 

developed using a subset of manually-identified images, resulting in an overall accuracy, 

recall, and f1-score of 93.8%, 93.7%, and 93.7%, respectively. The f1-score dropped to 

46.5% when tested on a new random subset of 10,269 images, likely due to highly 

imbalanced class distributions, high intraclass variance, and interclass morphological 

similarities of cells in naturally occurring phytoplankton assemblages. Our model was 

then used to predict taxonomic classifications of phytoplankton at Palmer Station, 

Antarctica over 2017-2018 and 2018-2019 summer field seasons. The CNN was 

generally able to capture important seasonal dynamics such as the shift from large centric 

diatoms to small pennate diatoms in both seasons, which is thought to be driven by 

increases in glacial meltwater from January to March. Moving forward, we hope to 

further increase the accuracy of our model to better characterize coastal phytoplankton 

communities threatened by rapidly changing environmental conditions. 
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2.2    Introduction 

The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem 

characterized by large summer phytoplankton blooms that support extensive krill and top 

predator populations (Ducklow et al. 2013). The WAP is experiencing significant 

environmental change, threatening this unique and productive ecosystem. One of the 

fastest warming regions on Earth, WAP winter air temperatures and surface ocean 

temperatures have increased by 6°C and >1°C, respectively, over the past 50 years 

(Meredith and King 2005; Turner et al. 2005; Cook et al. 2016). In response, 90% of 

marine glaciers are currently in retreat, the annual ice season has decreased by 92 days 

over the last 35 years, and there is no longer perennial sea ice in the northern WAP 

(Stammerjohn et al. 2012; Cook et al. 2016).  

Ocean warming and melting sea ice have impacted the phytoplankton community, 

which has implications for the entire food web. Phytoplankton biomass has significantly 

decreased in the northern WAP, associated with a shift from large-celled diatoms to 

smaller-celled cryptophytes and mixed flagellates (Montes-Hugo et al. 2009). This shift is 

concurrent with an increase in low salinity meltwater (Moline et al. 2004; Mendes et al. 

2013; Schofield et al. 2017). The increased spatial coverage of low salinity surface waters 

associated with continued glacial and sea ice melt is predicted to increase the prevalence 

of smaller-celled phytoplankton communities along the WAP, with important implications 

for food web structure and energy transfer efficiency (Sailley et al. 2013). 

The Palmer Long-Term Ecological Research project (PAL-LTER) was established 

in 1991 to investigate how changes in sea ice structure the pelagic ecosystem and 

biogeochemistry along the WAP. The project has previously used High Performance 
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Liquid Chromatography (HPLC) analysis of pigment data to characterize the taxonomic 

composition of phytoplankton assemblages (Kozlowski et al. 2011). This technique uses 

marker pigments of phytoplankton groups to assess their contribution to the overall 

abundance. However, HPLC lacks more detailed taxonomic classification and cell size 

information that is critical to understanding how warming and melting impacts 

phytoplankton communities along the WAP.   

To fill this knowledge gap, in 2017 the PAL-LTER acquired an Imaging 

FlowCytobot  (IFCB; McLane Labs, Falmouth, MA, USA). The IFCB is an automated 

imaging-in-flow submersible cytometer that uses a combination of video and flow 

cytometric technology to collect images and measure chlorophyll fluorescence and 

scattered light for each particle (~10-150 µm) in a 5 mL water sample (Olson and Sosik 

2007). These images can be analyzed to determine cell size dynamics, and sorted 

taxonomically to the genus or species level, thus providing much more detailed 

organismal information than HPLC methods.  

However, the IFCB can generate more than 10,000 high-quality images every 

hour, which becomes an immense amount of data over the duration of a research cruise or 

field season. This volume of data makes manual image identification impractical, 

therefore, these imaging platforms are often complemented by automated detection 

systems that allow for rapid and precise classification of plankton communities. Currently, 

there are two typical machine learning approaches for IFCB images: (1) a support vector 

machine based on a feature selection algorithm (88% overall accuracy with 22 classes; 

Sosik and Olson 2007), and (2) random forest (RF) algorithms (~70% overall accuracy 

depending on the model and number of classes, e.g., Picheral et al. 2017). Following 
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advancements in the field of computer vision through deep learning (LeCun et al. 2015) 

the IFCB community is now transitioning to convolutional neural networks (CNNs) for 

improved accuracy in image classification. CNNs extract features directly from images. 

Starting with raw imagery and labels, semantically meaningful features are learned as the 

network trains on a set of images. In theory, extracted features correspond to components 

of the image relevant to the labels, which makes these models highly accurate and well-

suited for image classification tasks.  

Since 2017, the PAL-LTER has collected over 10 million images spanning four 

summer field seasons. The goal of our study was to develop a CNN to sort WAP 

phytoplankton into taxonomic groups. This would allow for taxonomic classification of 

entire seasons of collected phytoplankton data in a short amount of time. Additionally, the 

CNN could be used as a tool to characterize phytoplankton communities in the field in 

near-real time to inform opportunistic sampling strategies.  The combination of the IFCB 

and a high-accuracy automated classification system would allow the PAL-LTER to learn 

more about shifts in phytoplankton community and size dynamics associated with rapidly 

changing environmental conditions.   

 

2.3    Methods 

2.3.1    Phytoplankton image collection and processing 

IFCB data were collected along the West Antarctic Peninsula over three summer 

field seasons: 2017-2018, 2018-2019, and 2019-2020. Whole water samples were 

collected at various depths from both the January cruise along the WAP (Anvers Island in 

the north to Charcot Island in the south) and from seasonal (November-March) sampling 
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at Palmer Station, Antarctica. 5 mL from each sample was analyzed with the IFCB to 

acquire images for each phytoplankton cell in the sample. Samples were passed through a 

150 µm Nitrex screen prior to analysis to prevent large cells from clogging the IFCB’s 

flow cell. Cells with a major axis length < 25 pixels (7.35 µm) were eliminated from the 

analysis as the resolution of the images was insufficient to provide clear identification.  

Images were processed using methods and software from (Sosik and Olson 2007) 

(https://github.com/hsosik/ifcb-analysis/wiki). Image processing results in a set of 233 

features describing each image including fluorescence, scattering intensity, equivalent 

spherical diameter, area, volume, and other morphometric parameters such as image 

texture and histogram of oriented gradients.  

 

2.3.2    Model development  

Processed images, metadata, and their associated features were uploaded to the 

web application EcoTaxa (https://ecotaxa.obs-vlfr.fr) (Picheral et al. 2017). Using 

EcoTaxa, a subset of 18,699 images was visually inspected and manually classified into 

38 living groups (taxonomic resolution ranging from genus to class) and 2 non-living 

groups (detritus and bubbles), with at least 100 images per group. Samples (images + 

features) were augmented to increase training sample size via image rotations, flips, 

gaussian noise, and contrast changes. Features were also randomly multiplied by a factor 

between 0.8 and 1.2. 

After augmentation, a training dataset of 40,000 samples with 1,000 in each class 

was used to develop a medium complexity CNN (8 convolutional layers and 2 million 

parameters), and 3,740 unaugmented images, approximately evenly split across classes, 
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were used as a validation dataset. Model precision, recall, and f1-score were calculated 

for the unmerged data considering all included groups, and for merged data considering 

only 8 general taxonomic groupings (pennate and centric diatoms, cryptophytes, 

prasinophytes, mixed flagellates, haptophytes, microzooplankton, and other). The “other” 

group includes primarily detritus with some bubbles. Precision is defined as true positives 

divided by the sum of true positives and false positives; it is the proportion of positive 

identifications that are correct. Recall is defined as true positives divided by the sum of 

true positives and false negatives; it is the proportion of actual positives that are identified 

correctly. The f1-score is the harmonic mean of precision and recall. Confusion matrices 

were also generated showing the percent of manually validated images predicted in each 

category by the CNN. 

 

2.3.3    Model validation 

We tested the model on a random subset of 10,269 new images filtered by cell 

major axis length > 25 pixels. Additionally, we used EcoTaxa’s RF algorithm to predict 

on the same images, using a maximum of 500 images per group. Predictions from both 

models were compared to manual identification of the images. Model precision, recall, 

and f1-score were calculated for unmerged and merged data for both the CNN and RF 

models, and a confusion matrix was generated for the CNN. 

 

2.3.4    Model application 

After training and evaluation, our model was used to predict taxonomic 

classifications of phytoplankton collected at 0 m from Station B near Palmer Station, 
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Antarctica over the 2017-2018 and 2018-2019 summer field seasons. CNN predictions 

were compared to manual validation of the images to determine the accuracy of the 

predicted seasonal trends.  

 

2.3.5    Sea ice characterization 

Sea ice data were calculated using version 3.1 of the GSFC Bootstrap sea ice 

concentrations. Sea ice duration is the time elapsed between day of advance and day of 

retreat. All sea ice metrics use the 200 km area south and west of Palmer Station. See 

(Stammerjohn et al. 2008a) for more information. 

 

2.4    Results 

2.4.1    Model accuracy 

The overall precision, recall, and f1-score of the model were 93.8%, 93.7%, and 

93.7%, respectively. After merging the initial set of 40 classes into the 8 broader 

taxonomic groups, the precision, recall, and f1-score of the model all increased to 96.5%. 

Accuracy per group was > 95% for all groups except for microzooplankton (> 80%), 

mixed flagellates (> 90%), and other (> 90%). 

Using the model to predict on the 10,269 new images resulted in unmerged and 

merged f1-scores of 46.5% and 47.6%, respectively. This is a 12% increase in the 

unmerged f1-score over EcoTaxa’s random forest model (46.5% vs. 41.5%, respectively; 

(Picheral et al. 2017)). The model predicted most accurately for pennate diatoms (92.9%), 

and performed moderately well for microzooplankton (66.7%), mixed flagellates (66.2%), 

cryptophytes (65.0%), and centric diatoms (64.3%; Table 1). Our model was least precise 
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predicting prasinophytes (39.6%) and other cells (14.9%; Table 1). Only one haptophyte 

was manually identified in the random dataset but was predicted correctly. 

 

2.4.2    Phytoplankton seasonal succession at Palmer Station 

Overall, the CNN captured important seasonal trends in phytoplankton dynamics. 

In both the 2017-2018 and 2018-2019 seasons, peak phytoplankton biovolume occurred 

midsummer (1 January 2018 and 4 February 2019; Fig. 1). In 2017-2018, the peak was 

dominated by a mix of cryptophytes, prasinophytes, and mixed flagellates, while in 2017-

2018 the peak was dominated by pennate diatoms. The CNN also captured spring and 

autumn peaks composed of centric diatoms in 2018-2019 (Fig. 1C-D).  

However, there are several discrepancies between methods. In both field years, but 

particularly 2017-2018, there were many cells manually identified as “other” that were 

classified as both mixed flagellates and prasinophytes by the CNN (Fig. 1). In this manner, 

the CNN appears to overestimate the abundance of these groups. The CNN also 

underestimated the abundance of cryptophytes, especially during peak biovolume in both 

years. Importantly, this misclassification of “other” cells also greatly overestimates the 

phytoplankton biovolume compared to manual validation, causing the phytoplankton peak 

in 2017 to appear much higher than for manual validation (Fig. 1A-B).   

The CNN also captured interesting seasonal trends in the diatom community. 

There was less total diatom biovolume in 2017-2018 compared to 2018-2019 (Fig. 2A, 

2D).  In both seasons, centric diatoms shifted from a dominance of  > 20 µm cells in 

November and December, to a dominance of 10-15 µm cells in February and March (Fig. 

2B, 2E). Pennate diatoms were consistently dominated by cells < 10 µm, with an increase 
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in biovolume during February and March, especially in 2018-2019 (Fig. 2C, 2F). Both 

seasons were primarily dominated by centric diatoms, with the notable exception of a 

large peak in pennate diatom biovolume in 2018 (Fig. 2A, 2D).  

 

2.4.3    Sea ice dynamics 

2017 had lower maximum winter sea ice coverage and shorter sea ice duration 

than 2018, but a later sea ice retreat (Table 2 and Fig. 3). Sea ice cleared the region rapidly 

in 2017, dropping from 52% coverage in November, to 12% in December, and 3% in 

January (Fig. 3). In 2018, the sea ice retreated earlier but coverage stayed higher in the 

region into the summer, with 24% coverage in November, 17% coverage in December, 

and 10% coverage in January (Fig. 3). 

 

2.5    Discussion 

2.5.1    Model development: successes and challenges 

Overall, we achieved the goal of our study: to create a CNN to accurately sort 

WAP phytoplankton into taxonomic categories. Our overall model achieved an f1-score of 

93.7% with an increase to 96.5% for merged taxonomic groupings. This indicates that our 

phytoplankton imagery data can be successfully and accurately sorted with machine 

learning techniques, greatly reducing the time spent classifying these images manually. 

Absolute comparisons to classification algorithms from previous studies is challenging 

given different numbers of classes, data filtering schemes, and methods for determining 

what constitutes test data, but in general these metrics compare very favorably to other 
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models. The development of regional and global phytoplankton classifying CNNs presents 

an opportunity to greatly advance our understanding of plankton diversity and ecology.   

However, our model f1-score dropped dramatically from 93.7% during model 

development to 46.5% during model validation on a new, random dataset with a class 

distribution representative of that found in natural waters. We believe that this large 

decrease in model accuracy is a key challenge rarely addressed in the literature. One 

reason for this decrease is the highly imbalanced class distributions of naturally occurring 

phytoplankton assemblages compared to our model testing dataset (e.g., see n values in 

Table 1). Model categories such as detritus are highly abundant in our dataset, often 

composing up to 50% of the biovolume in a sample, while other ecologically important 

groups, such as large, morphologically distinct diatoms including Corethron penatum and 

Eucampia antarctica are encountered sporadically in our dataset. A minor 

misclassification of detritus as a rare class can easily overwhelm that category. 

Nearly all previous studies report accuracy for a balanced and curated test dataset 

rather than a random sample of natural waters. During model development a balanced 

class distribution is necessary to ensure the model equally weights each category during 

training. For example, if during model development a single class composed 90% of the 

training dataset, the model could classify every sample as that class, ignoring all others, 

and be 90% accurate. The gradient descent optimization algorithm would never learn any 

other classes. In the few studies that do report accuracy in natural samples, our drop-off is 

similar (See Table 2 in (Sosik and Olson 2007)).  

The classes being naturally highly imbalanced creates several model development 

choices, including whether to exclude, up-sample, or augment low incidence classes, and 
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how specific model classifications should be (e.g., high level classes like diatoms, 

dinoflagellates, etc. or species level classes like Thalassiosira and Gyrodinium). We tried 

to strike a balance in our model setup by eliminating rare classes or merging them into 

broader groups while keeping groups morphologically distinct to prevent model 

confusion. However, there remains a degree of high intraclass variance and interclass 

similarity in morphology that was impossible to eliminate (e.g., 14.9% classification 

accuracy for “other”; Table 1). This challenge can be addressed on the other end of model 

development, by filtering samples where model uncertainty is high. The CNN outputs a 

confidence score (from the Softmax classification layer) for each prediction from 0 to 1 

that can be used to filter samples below a certain threshold. While potentially increasing 

the model accuracy, this could also bias the system against certain classes that are 

challenging to classify, and thus was not implemented in this work. 

Another potential cause of reduced model accuracy is data labelling errors. 

Theoretically, manual identification of images should be close to perfect, but 

unfortunately this is not the case. In this work and most others, there is often a bias for 

training and test data that is easily identifiable by manual validation, which prevents test 

metrics from translating exactly to the wild. There are also many images with 

conglomerations of cells including detritus and multiple living species. While these may 

be manually sorted into a category labelled “multiple” and discarded from the analysis, a 

CNN might sort these images into the most prominent class present within each image. 

Additionally, morphologically ambiguous cells may be sorted more accurately by a CNN 

than by manual identification, as a CNN can mathematically match image attributes to 

potential groups. One way we attempted to eliminate a portion of these ambiguous cells 
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was to exclude all cells with a major axis length less than 25 pixels (7.35 µm) prior to 

model training. These small cells are below the quantifiable limit of detection based on 

instrument resolution, and thus have a high probability of being incorrectly identified. 

Accurately classifying these smaller cells will likely require techniques other than 

imaging. The issues of class imbalance can also magnify labelling errors, especially when 

these errors are within abundant classes such as “detritus”. 

 

2.5.2    Phytoplankton seasonal succession at Palmer Station 

Like other studies, we found that following a winter with low sea ice (2017), the 

phytoplankton community had less diatoms, and more mixed flagellates and cryptophytes, 

and following a winter with high sea ice (2018), the community was dominated by 

diatoms (Figs. 1, 3, Table 2) (Saba et al. 2014; Schofield et al. 2017). Following trends 

found in previous years at Palmer Station (Schofield et al. 2017), we also saw diatoms 

dominate in the late spring and early autumn, and higher cryptophyte concentrations in 

peak summer (December and January). 

Along the WAP, phytoplankton show strong interannual and regional variability 

timed with light availability and sea ice retreat. As day length increases in austral spring, 

solar warming and sea ice melt stabilize the upper water column allowing phytoplankton 

to remain near the surface in waters with high light availability [18-19]. These conditions 

initiate large diatom-dominated spring blooms, as we saw in 2018 [20-21]. In 2017, there 

was 52% sea ice coverage in November, likely inhibiting light penetration and subsequent 

phytoplankton growth. Dramatic reduction in sea ice coverage between November and 

December indicates that the ice was rapidly advected out of the region, reducing sea ice 
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melt near Palmer Station and potentially reducing the stability of the upper mixed layer. In 

2018, although sea ice retreat is six days later than in 2017, November sea ice coverage is 

only 24%, allowing adequate light for phytoplankton growth. Additionally, the sea ice 

lingers into December and January (17% and 10%, respectively), providing a stable 

environment for growth well into the summer. Matching our results, (Annett et al. 2010) 

found that rapid sea ice retreat was associated with lower proportions of centric diatoms 

during the spring in Ryder Bay, Antarctica (Fig. 2). Sea ice can also hold populations of 

ice algae, which can seed coastal regions during melting in spring (Ackley and Sullivan 

1994). It is possible that with rapid sea ice advection from the region in 2017, less ice 

algae were released to the coastal region near Palmer Station than in 2018 when sea ice 

lingered and contributed more meltwater. 

Despite differences in phytoplankton abundance and community structure between 

the two years, there were similar trends in the diatom community. Late spring was 

dominated by large centric diatoms > 20 µm timed with sea ice retreat as described above. 

Progressing towards autumn, centric diatoms became smaller (< 20 µm), and the 

abundance of pennate diatoms < 10 µm increased (Fig. 3). A explanation for this size shift 

is the increasing amount of glacial meltwater from January to March (Meredith et al. 

2021). Stronger surface stratification due to increased ice melt can reduce nutrients in 

surface waters, giving an advantage to smaller phytoplankton with high surface-area-to-

volume ratios and reduced sinking rates (Li et al. 2009). Additionally, (Hernando et al. 

2015) experimentally exposed phytoplankton populations from Potter Cove, Antarctica to 

low salinity conditions (30 PSU) and found a decline in the abundance of large centric 

diatoms from ~90% on day 2 to ~0% on day 7, and an increase in abundance of small 
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pennate diatoms from ~0% on day 4 to ~95% on day 8. They attribute these changes to 

differing osmotic stress tolerances: in large centric diatoms, a decrease in salinity caused 

increases in individual cell size, compression of chloroplasts, granularization of the 

protoplasm, and retraction of the cytoplasm, while some small pennate diatoms (e.g., 

Fragiliariopsis cylindrus) may contain genes beneficial for adaptation to extreme 

environmental conditions in polar oceans and sea ice. Thus, increases in glacial meltwater 

in late summer could cause diatom communities to become smaller and increasingly 

dominated by pennate cells as we observed.  

 

2.5.3    Conclusions and next steps 

Our CNN is a step forward for understanding phytoplankton ecology along the 

WAP. However, there are still improvements to be made before it becomes a long-term 

tool for the community. As explained above, an important issue to address is class 

imbalance compounded with labelling errors of abundant classes. One potential way to 

better represent these undifferentiated classes (e.g., “detritus” or “multiple”) is to use 

unsupervised methods (e.g., non-linear dimensionality reduction, clustering, and manifold 

learning) to break these classes into several new groups. Defining classes purely via data 

rather than taxonomy could help models with potentially more easily separable decision 

boundaries. These techniques could also reduce manually labeled training data needs with 

semi-supervised classification, and in many cases unsupervised techniques may be 

sufficient for answering questions about phytoplankton dynamics without any need for 

supervised classification (Culhane et al. 2020). Another method could be to use a stage-

wise approach, with a one-class-classifier or binary classification to exclude “detritus” and 
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“multiple” images up front to limit the spread of these issues into the full output range 

which is exacerbated by the prevalence of these classes. In tandem to improving the 

classification itself, per class uncertainty estimates (sensu (Sosik and Olson 2007)) will be 

critical to unbiased extrapolation from CNN output to ecological dynamics. 

With further increases in model accuracy, we hope our model will become a 

helpful tool for phytoplankton research. Long-term warming and sea ice declines along the 

WAP are contributing to shifts to smaller and less abundant phytoplankton populations 

(Montes-Hugo et al. 2009), and these trends are likely to continue. Understanding the 

seasonal and spatial dynamics of phytoplankton diversity is integral to contextualizing 

how communities will change in the future. Beyond the CNN’s ability to rapidly classify 

entire seasons of collected phytoplankton imagery, it can also be used to characterize 

phytoplankton communities in near-real time. Getting a snapshot of species and cell size 

dynamics soon after collecting a sample would aid in opportunistic sampling while still in 

the field. This would be invaluable, as research time in Antarctica is both limited and 

expensive.  

Lastly, the PAL-LTER is not the only group experiencing these challenges: there 

is a broad IFCB user community searching for methods to automate sample classification 

to reduce the need for manual image validation. Various groups are independently creating 

phytoplankton CNNs and other models for their study sites of interest. We implore the 

community to begin reporting their model metrics on data with distributions representative 

of the natural environment, sharing labeled data openly on freely accessible platforms 

(e.g., EcoTaxa, IFCB Dashboard), and sharing open and reproducible code for processing 

and model development. As models improve, the community may be able to develop a 
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series of regional models, freely available to download and classify a worker’s data, or 

even a single generalizable model usable for the world oceans. Moving forward towards 

this vision, it will be critical for oceanographers to collaborate with computer scientists 

and modelers, incorporating the best computer vision and classification techniques to these 

datasets ultimately to better understand phytoplankton dynamics in a changing ocean.  
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2.7    Tables 
 
 
Table 1. Confusion matrix for broad taxonomic groups using 10,269 new, random 

images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Sea ice characterization. 
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Pennate  diatoms 
(n=1577) 92.9 0.8 0.3 0.6 4.8 0.0 0.0 0.7 

Centric diatoms 
(n=249) 2.8 64.3 5.2 2.4 15.3 0.0 0.0 10.0 

Cryptophytes 
(n=2565) 9.4 1.0 65.0 4.4 19.8 0.0 0.0 0.5 

Prasinophytes 
(n=493) 2.6 1.6 0.4 39.6 28.0 0.0 0.0 27.8 

Mixed flagellates 
(n=1085) 11.6 1.5 3.9 7.4 66.2 0.0 0.3 9.2 

Haptophytes (n=1) 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 

Microzooplankton 
(n=6) 0.0 16.7 0.0 0.0 16.7 0.0 66.7 0.0 

Other (n=3475) 26.9 10.9 4.9 18.4 23.8 0.0 0.3 14.9 
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Year Sea Ice Duration (days) Date of Sea 
Ice Retreat 

2017 132 December 3 
2018 153 November 27 
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2.8    Figures 
 

 
 
Figure 1. Methods comparison of phytoplankton seasonal succession for the (A-B) 2017-

2018 and (C-D) 2018-2019 summer field seasons, showing biovolume data from (A and 

C) manual validation and (B and D) CNN predictions. 
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Figure 2. Diatom seasonal diversity as predicted with the CNN for the (A-C) 2017-2018 

and (D-F) 2018-2019 summer field seasons. (A and D) Total biovolume attributed to 

pennate and centric diatoms. (B and E) Total biovolume attributed to different size 

classes of centric diatoms. (C and F) Total biovolume attributed to different size classes 

of pennate diatoms.  
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Figure 3. Percent sea ice coverage in the 200 km area south and west of Palmer Station 

during the 2017-2018 season (black) and the 2018-2019 season (blue).  
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3. Coastal phytoplankton seasonal succession and diversity on 
the West Antarctic Peninsula 

 
 
3.1    Abstract 
 
 In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms 

in late austral spring fuel a highly productive marine ecosystem. However, WAP 

atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are 

decreasing, and phytoplankton biomass in the northern WAP has decreased and shifted 

towards smaller cells. To better understand these relationships, an Imaging FlowCytobot 

was used to characterize seasonal (November to March) phytoplankton community 

composition and cell size during a low (2017-2018) and high (2018-2019) chlorophyll 

year in relation to physical drivers (e.g., sea ice and glacial meltwater) at Palmer Station, 

Antarctica. A shorter sea ice season with early rapid spring retreat resulted in low 

phytoplankton biomass with a low proportion of diatoms (2017-2018), while a longer sea 

ice season with late protracted spring retreat resulted in the opposite (2018-2019). 

Despite these differences, phytoplankton seasonal succession was similar in both years: 

(1) a large-celled centric diatom bloom during spring sea ice retreat; (2) a peak-summer 

phase to mixotrophic cryptophytes with increases in light and post-bloom organic matter; 

and (3) a late-summer phase to small (< 20 μm) diatoms and mixed flagellates with 

increases in wind-driven nutrient resuspension. Additionally, cell diameter decreased 

through both seasons with increases in meteoric meltwater input. The tight coupling 

between sea ice, meltwater, and phytoplankton species composition suggests that 

continued warming in the WAP will affect phytoplankton seasonal dynamics which will 

impact seasonal food web dynamics. 
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3.2    Introduction 
 

Coastal waters along the West Antarctic Peninsula (WAP) host a highly 

productive, ice-dependent marine ecosystem fueled by large, seasonal phytoplankton 

blooms reaching concentrations > 20 mg chlorophyll-a m-3 (Vernet et al. 2008; Ducklow 

et al. 2013; Kim et al. 2018). Average primary productivity in the WAP is ~182 g C m-2 

y-1, which is similar to other continental shelf areas in Antarctica (Arrigo et al. 2008), but 

four times lower than other productive coastal regions in the world’s oceans (Vernet and 

Smith 2006). WAP phytoplankton blooms initiate in the austral spring when increased 

solar irradiance alleviates light limitation, and sea ice melt stratifies the upper water 

column and confines phytoplankton in well-lit surface waters (Vernet et al. 2008; 

Venables et al. 2013). Macronutrients and micronutrients are generally replete in the 

nearshore coastal WAP waters (Ducklow et al. 2012; Kim et al. 2016; Sherrell et al. 

2018; Carvalho et al. 2019), thus upper water column stratification is considered the 

primary driver of phytoplankton productivity (Garibotti et al. 2005; Vernet et al. 2008; 

Carvalho et al. 2019). Seasonal phytoplankton dynamics are tightly coupled to krill 

recruitment (Saba et al. 2014), and krill in turn are the main food source for penguins, 

seals, whales, and other predators (Pikitch et al. 2014), suggesting a strong bottom-up 

control of the ecosystem. Thus, studying how coastal phytoplankton communities 

respond to physical drivers is imperative for understanding ecosystem structure and 

function.  

 The coastal WAP phytoplankton community is comprised of diatoms, 

cryptophytes, mixed flagellates, prasinophytes, and haptophytes, with diatoms making up 

the highest percentage of annual biomass (Garibotti et al. 2005; Gonçalves-Araujo et al. 
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2015; Schofield et al. 2017). However, different phytoplankton species require specific 

abiotic conditions for optimal growth, causing both seasonal and interannual variability in 

species composition. Earlier studies have tried to reconstruct seasonal succession along 

the WAP (Garibotti et al. 2005; Schofield et al. 2017; van Leeuwe et al. 2019); however, 

validation of these hypotheses is still an open question as the results are largely based on 

phytoplankton accessory pigments which are only capable of resolving general taxa. In 

general, there are three phases of phytoplankton seasonal succession from austral spring 

to autumn in the coastal WAP: (1) a diatom-dominated bloom comprised primarily of 

large centric diatoms associated with sea ice retreat and upper water column stratification 

in November/December, (2) a cryptophyte-dominated community associated with low 

chlorophyll-a, decreased nutrient stocks, and shallow mixed layer depths (MLD) in 

December/January, and (3) a diatom-enriched assemblage associated with low 

chlorophyll-a including small diatoms, haptophytes, and unidentified flagellates in 

February/March (Garibotti et al. 2005; Schofield et al. 2017; van Leeuwe et al. 2019).  

 The productive WAP ecosystem is being subject to significant environmental 

change. One of the fastest warming regions on Earth, WAP winter air temperatures and 

surface ocean temperatures have increased by 6°C and >1°C, respectively, since 1951 

(Meredith and King 2005; Turner et al. 2005). In response, 90% of marine glaciers were in 

retreat as of 2016, the annual ice season has decreased by > 92 days since 1979, and there 

is no longer perennial sea ice in the northern WAP (Stammerjohn et al. 2012; Cook et al. 

2016). Ocean warming, sea ice and glacial retreat, and glacial melt have in turn impacted 

the phytoplankton community, with significant decreases in mean phytoplankton biomass 

in January along the northern WAP associated with a shift from large (> 20 μm) to small-
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celled (< 20 μm) phytoplankton (Montes-Hugo et al. 2009). It is hypothesized that this 

size shift is driven by increasing cryptophyte (cell diameters of ~6.5-9 μm) abundance in 

coastal regions that are often associated with low salinity meltwater (Moline et al. 2004; 

Mendes et al. 2013; Schofield et al. 2017). The reasons why cryptophytes might 

outcompete diatoms in low-salinity waters are not well understood, but are hypothesized 

to be related to an advanced light-adaptation system that allows them to thrive in stratified 

surface waters with high irradiances (Kaňa et al. 2012; Mendes et al. 2017). The increased 

spatial extent of low salinity surface waters is predicted to increase the prevalence of 

smaller-celled phytoplankton communities along the WAP (Moline et al. 2004), with 

important implications for food web structure and trophic energy transfer efficiency 

(Sailley et al. 2013). 

 The Palmer Long-Term Ecological Research Project (PAL-LTER) was established 

in 1991 to investigate how warming and sea ice loss will change the structure of the 

pelagic ecosystem and biogeochemistry along the WAP. The project has previously used 

High Performance Liquid Chromatography (HPLC) analysis of pigment data to 

characterize the taxonomic composition of phytoplankton assemblages (e.g., Schofield et 

al. 2017). This technique uses marker pigments of phytoplankton groups to assess their 

contribution to the overall abundance. Few studies have looked at higher taxonomic 

resolution and cell size distributions over seasonal scales along the WAP.  

 Our study utilized an imaging-in-flow cytometer to characterize seasonal and 

interannual phytoplankton diversity at Palmer Station, Antarctica, with a focus on local 

sea ice and meltwater impacts. We sampled during a high and low chlorophyll year to 

investigate (1) interannual differences in the physical environment and corresponding 
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differences in phytoplankton communities, and (2) potential mechanisms driving 

phytoplankton seasonal succession between years. Results showed that despite significant 

differences in sea ice dynamics and phytoplankton biomass between years, there were 

consistent seasonal succession patterns that matched the broader successional framework 

developed by Behrenfeld et al. (2021), which is an updated version of Margalef (1978)’s 

original mandala that incorporates phytoplankton cell size, division rates, and loss rates. 

Additionally, environmental disturbances (e.g., spring sea ice retreat, wind-driven 

mixing, glacial and sea ice melt) throughout the season drove changes in phytoplankton 

community composition that could not be described using HPLC alone. These findings 

provide insights into regulation of seasonal phytoplankton dynamics and help us 

hypothesize how ongoing warming and melting along the WAP might impact future 

coastal phytoplankton communities.  

 

3.3    Methods 
 
3.3.1    Sample collection 
 

Annual sample collection at Palmer Station, Antarctica (Fig. 1) has been 

conducted by the PAL-LTER since 1991 at two locations: an inshore station (B, bottom 

depth of ~75 m) and an offshore station (E; bottom depth of ~200 m). These stations are 

sampled twice a week from when the sea ice breaks out (~ mid-October/November) to 

late March. Inclement weather and heavy sea ice can limit sampling in this region, 

leading to occasional gaps in the dataset.  

 For this study, we focused on two summer field seasons: 2017-2018 (16 

November to 26 March), which had lower than average chlorophyll-a and shorter than 
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average winter sea ice duration, and 2018-2019 (2 November to 28 March), which had 

higher than average chlorophyll-a and longer than average winter sea ice duration (Fig. 

2). Because our study focused on the impacts of meltwater on inshore phytoplankton 

communities, our analysis exclusively used surface samples from Station B, which is 

adjacent to the Marr Glacier (Fig. 1). 

 For each sampling event, a SeaBird Electronics Seacat SBE 19plus sensor 

(measuring salinity, temperature, depth) was profiled down to 60 m. These data were 

averaged into 1-m depth bins. In addition, surface seawater samples were collected with a 

4 L niskin bottle and stored in a cold, dark environment until sample processing on return 

to Palmer Station.  

 

3.3.2    Phytoplankton pigment analysis 
 
 Concentrations of chlorophyll-a and accessory pigments were measured via 

HPLC. 1-2 L of whole seawater was filtered onto GF/F filters (pore size = 0.7 μm, 

diameter = 25 mm), flash-frozen in liquid nitrogen, and stored at -80°C for post-season 

analysis. The samples were shipped to Rutgers University (New Brunswick, NJ), where 

they were extracted in 90% methanol and 2% aqueous ammonium acetate, ultrasonicated 

for 30 sec (while kept cold in ice water), stored at -20°C for at least 2 h, ultrasonicated 

again for 10 sec, and then centrifuged to separate the extract from the filter. The extract 

was run on the HPLC system (Agilent 1100/1200 series with a Diode Array Detector 

(Model G1315C, scanning wavelengths 275-800 nm) and a Zorbax Eclipse Plus C18 

column, 4.6 x 250 mm, 5 μm) to separate the pigments. HPLC Grade phase eluents were 

used following Wright et al. (1991): Solvent A = 80% methanol and 20% aqueous 
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ammonium acetate with pH = 7.2; Solvent B = 90% acetonitrile and 10% water; and 

Solvent C = 100% ethyl acetate. Agilent software quantified peaks at 440 nm and 

identified pigments based on retention time and spectral shape. These values were 

manually checked and any mistakes corrected. Using the output HPLC pigment data, 

phytoplankton taxonomic composition was quantitatively determined in CHEMTAX 

V1.95 using pigment ratios derived from WAP phytoplankton (Kozlowski et al. 2011). 

Output phytoplankton groups include diatoms, cryptophytes, prasinophytes, haptophytes 

and mixed flagellates (including both dinoflagellates and other phytoflagellates). 

 

3.3.3    Phytoplankton species and size analysis 
 
 For species identification and cell size distributions, 5 mL of each surface sample 

was analyzed with an Imaging FlowCytobot (IFCB; McLane Labs, Falmouth, MA, 

USA). The IFCB is an imaging-in-flow cytometer that uses a combination of video and 

flow cytometric technology to collect images and measure chlorophyll fluorescence and 

scattered light for each particle (~10-150 μm) in each water sample (Olson and Sosik 

2007). Samples were passed through a 150 μm Nitrex screen prior to analysis to prevent 

large cells from clogging the IFCB’s flow cell. Cells with major axis length < 20 pixels 

(5.88 μm) were eliminated from the analysis as the resolution of the images was 

insufficient to provide clear identification. 

Images were extracted from IFCB files and processed using methods and software 

from Sosik and Olson (2007; https://github.com/hsosik/ifcb-analysis/wiki). Image 

processing results in a set of 233 features describing each image including equivalent 

spherical diameter, area, and biovolume of each cell. Processed images were then sorted 
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into 40 taxonomic groups using a medium complexity convolutional neural network 

(~2,000,000 parameters) that was created and validated using WAP phytoplankton 

(Nardelli et al. 2021; https://github.com/patrickcgray/deep_ifcb). Processed images, 

along with their predicted identifications, associated features, and metadata were 

uploaded to the web application EcoTaxa (Picheral et al. 2017; https://ecotaxa.obs-

vlfr.fr), where predicted images were manually validated or resorted into their correct 

taxonomic group.  

Identification of individual cells was performed to the lowest possible taxonomic 

level, e.g., most diatoms were identified to species level and most phytoflagellates were 

identified to class level (cryptophyte, prymnesiophyte, and prasinophyte; see Table 1), 

with guidance from Hasle et al. (1997) and Scott et al. (2005). Mixed flagellates included 

dinoflagellates (e.g., Gymnodinium spp., Gyrodinium spp. and others), silicoflagellates 

(e.g., Dictyochales spp.), and other unidentified phytoflagellates. Prasinophytes primarily 

included Pyramimonas spp. and Pterosperma spp., and haptophytes primarily included 

Phaeocystis antarctica. Diatoms were divided into centric and pennate groups (see Table 

1). Unidentified centric discoid cells included Thalassiosira spp., Coscinodiscus spp., 

Minidiscus chilensis, Porosira spp., Actinocyclus actinochilus, Asteromphalus hookeri, 

and Stellarima microtrias, among others. Unidentified pennate cells included Banquisia 

belgicae, Membraneis spp., Navicula spp., Fragilariopsis spp., and Nitzschia spp., among 

others. Chains of unidentified centric and pennate diatom species were included in the > 

20 μm category. 

In addition, aggregated metrics for all phytoplankton cells and for the six broad 

taxonomic groups (centric diatoms, pennate diatoms, cryptophytes, mixed flagellates, 
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haptophytes, and prasinophytes) were calculated for each sample. These include total 

biovolume (sum of biovolume of all cells in a sample divided by the mL of water 

sampled), total abundance (number of all cells in a sample, divided by the mL of water 

sampled), and median cell diameter. 

Since IFCB-derived phytoplankton cell biovolume and HPLC-derived 

chlorophyll-a concentrations were both estimates of total phytoplankton biomass for each 

method, we compared the two using Kendall rank correlation to confirm general 

agreement. To validate taxonomic precision, IFCB data were separated into broad 

taxonomic groups matching those derived from HPLC (diatoms, cryptophytes, 

prasinophytes, haptophytes, mixed flagellates). Then, the methods were compared for 

each taxonomic group by evaluating the Kendall rank correlation between percent taxa in 

each sample for both methods.  

In both years, preserved samples (5 mL whole seawater in 50% glutaraldehyde) 

were collected during times when the IFCB was not available (i.e., undergoing 

maintenance or aboard the vessel on the annual 1-month WAP cruise). Fixed samples 

were flash-frozen in liquid nitrogen and stored at -80°C for post-season analysis. In 2017-

2018, samples were preserved from 5 January to 5 February, and in 2018-2019, samples 

were preserved on 13 December and from 7 January to 28 March. On 22, 26, and 28 

December 2017, live samples were collected alongside preserved samples. On average, 

total biovolume and cell abundance of preserved samples were underestimated by 

48.07% and 36.36%, respectively, when compared to live samples (Supplementary Fig. 

1A-B). However, changes in the relative magnitudes between the three samples is similar 

(Supplementary Fig. 1A-B), as are the taxonomic proportions of different taxa groups 
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(Supplementary Fig. 1C-E). Cryptophytes and prasinophytes were consistently found at 

higher percentages in preserved versus live samples, indicating a potential preservation 

bias towards these groups (on average 17.38% more cryptophytes and 32.86% more 

prasinophytes in preserved samples; Supplementary Fig. 1C-E). 

To quantify phytoplankton diversity from IFCB data, the Shannon diversity index 

(H) was used, which describes the number and richness of groups sampled:  

𝐻 = −$𝑝! ln 𝑝!

"

!#$

 

Where pi is the proportion of individuals in the ith group identified in the data set and R 

is the total number of groups identified in the data set. Higher values of H suggest that 

there are both more groups represented in the data set and more members of each of those 

groups. An H value of zero indicates only one group present in the data set.  

 

3.3.4    Defining phytoplankton seasonal succession phases 
 

Seasonal succession phases were defined using relative species compositions 

from IFCB data. Data were divided into phases following those hypothesized in Garibotti 

et al. (2005). The first successional phase (“Ice Retreat Phase”) was a diatom bloom 

associated with the sea-ice edge. The start of the Ice Retreat Phase was defined as the 

first sampling day of the season, occurring just as sea ice began to break up to allow 

small boat activity. The second successional phase (“Peak Summer Phase”) was an 

assemblage dominated by cryptophytes. The start of the Peak Summer Phase was defined 

as the first of three consecutive sampling days when cryptophyte percent composition 

rose above 15% and ends once cryptophyte composition drops back below 15% for three 
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consecutive sampling days (Supplementary Fig. 2). A threshold of three sampling days 

was chosen to confirm the composition shift was steady and not driven by variability 

within a given week. The third successional bloom phase (“Late Summer Phase”) was a 

diatom-rich assemblage in ice-free conditions. The Late Summer Phase begins when the 

Peak Summer Phase ends and corresponds to a rise in diatom percent composition to the 

highest values of the season (Supplementary Fig. 2). In 2018-2019, however, there is a 

fourth successional phase (“Late Summer Phase B”) characterized by an initial drop in 

diatom percent composition below 35% and a simultaneous increase in mixed flagellate 

percent composition above 30%, after which diatom percent composition increased again 

(Supplementary Fig. 2).  

 

3.3.5    Nutrient analyses 
 
 Surface samples were analyzed for nitrate plus nitrite (NO3- + NO2-; hereafter 

called nitrate due to the very low concentration of nitrite), phosphate (PO43-), and silicate 

(Si(OH)4-) following methods from The Joint Global Ocean Flux Study (1994). 1 L from 

each surface sample was filtered through GF/F filters (pore size = 0.7 μm, diameter = 25 

mm) and stored at -20°C in 15 mL acid-rinsed Falcon centrifuge tubes for post-season 

analysis. The samples were shipped to Lamont Doherty Earth Observatory at Columbia 

University (New York, NY), where they were analyzed using a SEAL Analytical 

AutoAnalyzer AA3 HR, Software version 6.10 (Mequon, WI), G-297-03 Rev 4 

(Multitest MT19 for phosphate), G-172-96 Rev 16 (Multitest MT 19 for nitrate), and G-

177-96 Rev 11 (Multitest MT19 for silicate), using the following standards: potassium 
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dihydrogen phosphate for phosphate, potassium nitrate and sodium nitrite for nitrate, and 

sodium metasilicate nonahydrate for silicate analyses. 

 

3.3.6    Meltwater composition  
 
 Water from each surface sample was drawn into 50 mL glass vials, sealed with 

stoppers and aluminum crimps, and stored in a dark, +4°C box. Samples were transported 

to the National Environmental Isotope Facility at the British Geological Survey 

(Keyworth, Nottinghamshire, UK). There, an Isoprime 100 mass spectrometer plus 

Aquaprep device were used to analyze oxygen isotope composition (𝛿18O) using the CO2 

equilibration method. Measurements were calibrated against the internal and international 

standards (e.g., VSMOW2 and VSLAP2). An analytical reproducibility of +/- 0.02‰ was 

obtained with duplicate analysis. 

 Using 𝛿18O and surface salinity data, we quantitatively separated sea ice melt 

from meteoric water (glacial melt and precipitation) by solving a three-endmember mass 

balance equation (see methods in Meredith et al. (2021); endmember values are listed in 

their Table 1). Using this mass balance equation, negative values for sea ice melt are 

possible and are indicative of net sea ice formation from the preceding winter.  

 

3.3.7    Water column stability 
 
 Mixed layer depths could not be confidently predicted (QI < 0.5; Lorbacher et al. 

2006) at Station B due to the shallow water depth (~60 m). Thus, average Brunt–Väisälä 

Frequency (N2) values were calculated for the top 25 m using methods from Carvalho et 
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al. (2017) to quantify and compare upper water-column stability within and between our 

two sampling seasons. 

 

3.3.8    Weather data 
 
 Wind speed (m s-1; RM Young, Model 05108-45) and photosynthetically active 

radiation (μmol sec-1 m-1; Licor, Model LI 190) measurements were obtained from an 

automated weather station located just behind Palmer Station. 5-day averages of wind 

speed (current day and the 4 previous days) and daily-averaged PAR were calculated 

from 2-minute data. 

 

3.3.9    Sea ice data 
 
 Sea ice metrics were calculated from satellite-derived daily sea ice concentration 

(%) data determined using the GSFC Bootstrap algorithm version 3.1 and extracted for 

the 25 km x 25 km satellite pixel closest to Palmer Station. Following methods in 

Stammerjohn et al. (2008), day of ice-edge advance was calculated as the first day when 

sea ice concentration exceeded a 15% threshold for at least 5 consecutive days; day of 

ice-edge retreat was calculated as the last day before sea ice concentration dropped below 

a 15% threshold after being above 15% for at least 5 consecutive days; sea ice duration is 

the number of days between the day of advance and the day of retreat, and number of sea 

ice days are the number of days between the day of advance and day of retreat where sea 

ice concentration is >15%.   

 

 



 

 

39 

 

3.3.10    Statistical analyses 
 

To assess interannual differences, one-way ANOVAs with Kruskal-Wallis post-

hoc tests were conducted for each environmental variable (sea ice concentration, PAR, 

surface temperature, surface salinity, percent meteoric meltwater, percent sea ice 

meltwater, N2, wind speed, nitrate, phosphate, and silicate) and phytoplankton variable 

(chlorophyll-a concentration, H, and IFCB-derived phytoplankton biovolume, 

abundance, and median diameter), to determine whether values were significantly 

different between the two field seasons. To assess relationships between environmental 

and phytoplankton variables within each season, Kendall rank correlation tests were used. 

Non-parametric statistics were used due to the non-normal data distributions for most 

variables. 

 

3.4    Results 
 
3.4.1    HPLC versus IFCB taxonomy comparison 
 
 HPLC-derived chlorophyll-a concentrations were significantly positively 

correlated to IFCB-derived biovolume concentrations (Kendall p = 1.5x10-9, τ = 0.47; 

Supplementary Fig. 3). Peaks in biomass were generally similar relative to other peaks 

within each season between the two methods, with notable differences including much 

lower peaks for IFCB-derived biovolume on 19 November 2018 and 21 January 2019 

compared to HPLC-derived chlorophyll-a (Fig. 3).  

Additionally, there were significant, positive correlations between percent taxa 

calculated with each method for diatoms, cryptophytes, prasinophytes, and mixed 

flagellates (Kendall p < 0.0001, τ = 0.34-0.52; Supplementary Fig. 4A-D), and a non-
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significant, positive correlation for haptophytes (Kendall p = 0.49, τ = 0.05; 

Supplementary Fig. 4E). Despite a significant positive correlation, IFCB classification 

overpredicted mixed flagellates compared to HPLC classification, illustrated by the skew 

of points above the 1:1 line in Supplementary Fig. 4D, and by the greater annual total 

percent of mixed flagellates using IFCB classification compared to HPLC classification 

(by 23% in 2017-2018 and by 7% in 2018-2019; Fig. 3). Similarly, IFCB classification 

underpredicted diatoms compared to HPLC classification, illustrated by the skew of 

points below the 1:1 line in Supplementary Fig. 4A, and by the lesser annual total percent 

of IFCB-classified diatoms compared to HPLC-classified diatoms (by 24% difference in 

2017-2018 and by 8% difference in 2018-2019; Fig. 3). Despite discrepancies between 

methods, IFCB data provided information that HPLC data could not, including cell size 

and species composition within taxonomic groups (Table 1).  

 

3.4.2    Interannual differences 
 
 Compared to the winter of 2018, the winter of 2017 had a later autumn sea ice 

advance date (16 day difference), an earlier spring sea ice retreat date (24 day difference), 

shorter sea ice duration (40 day difference), and less total ice days (52 day difference; 

Table 2, Fig. 4A-B). Sea ice was rapidly advected from the region in 2017, dropping 

from 49% on 27 November to 0% on 3 December (Fig. 4A). In 2018, there was an initial 

drop in sea ice concentration from 96% on 2 November to 29% on 5 November, but then 

sea ice lingered into January remaining steady at an average of 34.8% until it retreated on 

26 December, with intermittent advection in and out of the region until 16 January (Fig. 

4B). Consistent with these trends, there were no positive sea ice melt contributions to 
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coastal surface waters in 2017 (Fig. 4C), while there were significant positive 

contributions in November and December in 2018 (Fig. 4D). 𝛿18O-derived freshwater 

sources (sea ice melt and meteoric water) reflect the net seasonal freshwater balance, so 

negative values of percent sea ice melt indicate that seasonally, there was net sea ice 

growth in the Palmer region (i.e., more sea ice grew here than melted here). Thus, 

negative values in November and December 2017 likely indicate that sea ice was grown 

in the Palmer region the previous autumn and melted elsewhere in spring, whereas 

positive values in December and January 2018 indicate local spring melting that exceeds 

the previous autumn’s local growth. During the sampling period (1 November to 31 

March), sea ice concentrations were significantly higher in 2018-2019 than in 2017-2018 

(Kruskal-Wallis p = 0.05; Table 3). Aside from interannual differences in sea ice due to 

wind-driven advection, the physical and biogeochemical environment were relatively 

similar between the two years (Table 3, Fig. 5; Kruskal-Wallis p > 0.05), except for 

nitrate and silicate which both had higher concentrations in 2018-2019 (Kruskal-Wallis p 

= 0.04 and 9.72x10-14, respectively; Table 3, Figs. 6A, B, E, F).  

 Phytoplankton data showed significantly higher chlorophyll-a concentrations in 

2018-2019, but significantly lower H values (Kruskal-Wallis p = 0.03 and 0.05, 

respectively; Table 4, Fig. 7). Taxonomically, there were greater percent diatom and 

haptophyte biovolumes in 2018-2019 (Kruskal-Wallis p = 0.02 and 0.04, respectively), 

and greater percent mixed flagellate and prasinophyte biovolumes in 2017-2018 

(Kruskal-Wallis p = 0.001 and 0.01, respectively; Supplementary Table 1, Fig. 3 pie 

charts).  
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3.4.3    Spring-autumn environmental trends 
 
 In both seasons, surface PAR was variable but showed a parabolic pattern, rising 

to a peak in late December/early January, then decreasing to the lowest values at the end 

of March (Fig. 5A-B). Surface temperature reflected seasonal warming, with the coldest 

temperatures in November, rising to a plateau in late January (Fig. 5C-D). Surface 

salinity, percent meteoric meltwater, and upper water-column stability were tightly linked 

in both seasons, with low salinity corresponding to high percent meteoric meltwater 

(Kendall; 2017-2018: p = 2.38x10-5 and τ = -0.66; 2018-2019: p = 1.88x10-5 and τ = -

0.62) and high N2 values (Kendall; 2017-2018: p = 4.61x10-12 and τ = -0.70; 2018-2019: 

p = 2.75x10-12 and τ = -0.67). Higher N2 values were also correlated with lower wind 

speeds (Kendall; 2017-2018: p = 3.83x10-4 and τ = -0.39; 2018-2019: p = 4.93x10-6 and τ 

= -0.47). In general, salinity decreased through both seasons (Kendall; 2017-2018: p = 

0.03 and τ = -0.24; 2018-2019: p = 0.007 and τ = -0.28) as percent meteoric meltwater 

increased (Kendall; 2017-2018: p = 0.02 and τ = 0.39; 2018-2019: p = 0.001 and τ = 

0.49), however N2 was a bit more variable due to its relationship with wind speed (Fig. 

5E-J). Wind speeds were generally higher in the early (beginning of November) and late 

(end of March) periods of the sampling season (Fig. 5K-L). Nutrients were variable 

throughout both seasons, with reductions in nitrate, phosphate, and often silicate co-

occurring with peaks in chlorophyll-a (Fig. 6). Nitrate was also positively correlated to 

wind speed (Kendall; 2017-2018: p = 0.03 and τ = 0.24; 2018-2019: p = 0.01 and τ = 

0.30).  

Additionally, there was a notable series of events from late January to early 

February in 2019. A wind event from 25 January to 28 January (mean 5.34 m s-1) co-
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occurred with a drop in N2, a peak in salinity, a drop in percent meteoric meltwater, and a 

peak in nutrients (Fig. 5F, H, J, L and 6B, D, F). Just after this wind event, surface PAR 

increased dramatically and wind speeds dropped, causing percent meteoric meltwater to 

peak on 4 February corresponding with a dramatic dip in surface temperature, the lowest 

salinity of the season, the highest N2 value of the season, the highest chlorophyll-a value 

of the season, and the lowest nutrient concentrations of the season (Fig. 5B, D, F, H, J, L 

and 6B, D, F).  

 

3.4.4    Spring-autumn phytoplankton succession patterns 
 
 Both years mostly followed the seasonal succession phases found in previous 

local studies (Garibotti et al. 2005; Schofield et al. 2017). As sea ice concentration 

dropped below ~50% in November during the Ice Retreat Phase, the first phytoplankton 

bloom of the season occurred: a diatom-dominated ice edge bloom (Figs. 3, 4A-B, 8). In 

2017-2018, the Ice Retreat Phase occurred from 14 November to 18 December with peak 

biovolume on 4 December (0.38 μL L-1), and in 2018-2019, the Ice Retreat Phase 

occurred from 2 November to 29 November with peak biovolume on 22 November (0.86 

μL L-1) and a subsequent small peak on 29 November (0.39 μL L-1; Fig. 3C-D). In both 

years, the Ice Retreat Phase was dominated by centric diatoms (35.6% in 2017-2018 and 

72.5% in 2018-2019; Fig. 8A-B) and these centric diatoms were mostly unidentified 

discoid cells with diameters > 20 μm (38.1% in 2017-2018 and 86.1% in 2018-2019), 

likely consisting of a mix of large, chain-forming diatoms including Thalassiosira spp. 

(Fig. 8C-D).  
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The Peak Summer Phase was characterized by cryptophytes and mixed 

flagellates. In 2017-2018, the Peak Summer Phase occurred from 22 December to 18 

January and included the season’s highest biovolume on 1 January (1.01 μL L-1), while in 

2018-2019, the Peak Summer Phase occurred from 5 December to 3 January with a small 

peak on 20 December (0.60 μL L-1; Fig. 3C-D). In 2017-2018, cryptophytes and mixed 

flagellates dominated species composition, with 38.9% and 31.0%, respectively (Fig. 

3C). In 2018-2019, cryptophytes and mixed flagellates increased in abundance from the 

initial bloom (5.1-29.7% and 12.0-20.4%, respectively), but diatoms also continued to 

dominate total composition (24.0% centric and 19.1% pennate; Fig. 3D, 8B).  

The Late Summer Phase was enriched in smaller diatoms. In 2017-2018, the Late 

Summer Phase occurred from 22 January to the end of IFCB sampling (12 March) with a 

relatively constant biovolume (mean of 0.31 μL L-1) and was dominated by 45.1% centric 

diatoms and 33.8% mixed flagellates (Fig. 3C, 8A). Of the centric diatoms, 59.3% were 

unidentified discoid cells with a diameter between 10-15 μm and 27.5% were 

unidentified cells with a diameter between 15-20 μm (Fig. 8C). In 2018-2019, however, 

the Late Summer Phase can be split into two distinct sub-phases: a water column 

stability-induced pennate diatom bloom (Late Summer Phase A) from 7 January to 14 

February (peak biovolume of 2.43 μL L-1 on 4 February, environmental conditions 

described in previous section), and a centric diatom-enriched late summer bloom (Late 

Summer Phase B) from 18 February to the end of IFCB sampling on (28 March; mean 

0.53 μL L-1 peak biovolume from 14 March to 25 March) more like the late summer 

community seen in 2017-2018 (Fig. 3D). Late Summer Phase A had 41.8% pennate 

diatoms (95.9% comprised of unidentified cells with diameters < 10 μm) and 27.0% 
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centric diatoms (88.9% comprised of unidentified discoid cells with diameters > 20 μm) 

(Fig. 8B, D, F). Late Summer Phase B had 50.5% centric diatoms (50.5% comprised of 

unidentified discoid cells with diameters 10-15 μm and 33.7% comprised of unidentified 

cells with diameters 15-20 μm) and 29.8% mixed flagellates (Fig. 3D, 8D). The < 10 μm 

unidentified pennate diatoms likely included Fragilariopsis spp. and Nitzschia spp., and 

the 10-20 μm unidentified centric diatoms likely included smaller Thalassiosira spp. and 

M. chilensis.  

Matching seasonal succession patterns, phytoplankton median cell size decreased 

through both years (Kendall; 2017-2018: p = 0.008 and τ = -0.31; 2018-2019: p = 

7.96x10-5 and τ = -0.42; Fig. 9). This trend was positively correlated to a seasonal 

decrease in salinity in both years (Kendall; 2017-2018: p = 9.45x10-4 and τ = 0.38; 2018-

2019: p = 0.04 and τ = 0.22), suggesting increasing freshwater might be responsible for 

the decrease in cell size. 

  

3.5    Discussion 
 
 This work reveals the mechanisms of winter sea ice dynamics influencing 

interannual phytoplankton biomass and diatom abundance, as well as the importance of 

meteoric meltwater in structuring water column stability later in the summer season in 

tandem with a shift towards smaller phytoplankton cell sizes (e.g., pennate diatoms < 10 

μm). Despite significant differences in sea ice extent and total phytoplankton biomass 

between years, phytoplankton successional patterns were remarkably similar and driven 

by consistent seasonal drivers (e.g., solar irradiance, temperature, and meltwater), while 

storm/wind events drove more ephemeral differences between years (e.g., the late 



 

 

46 

 

January/early February 2019 event). Phytoplankton species composition and cell size 

information collected by the IFCB was invaluable for gaining this more in-depth 

understanding of seasonal and interannual phytoplankton dynamics at Palmer Station.   

 

3.5.1    Drivers of interannual differences in phytoplankton biomass and composition 
 

Along the WAP, phytoplankton demonstrate strong interannual and regional 

variability seasonally-timed with light availability and spring sea ice retreat. As day 

length increases in austral spring, solar warming and sea ice melt help to stabilize the 

upper water column allowing phytoplankton to remain near the surface in waters with 

high light availability (Vernet et al. 2008; Venables et al. 2013). These conditions initiate 

large diatom-dominated spring blooms as we saw in both field years (Mitchell and Holm-

Hansen 1991; Prézelin et al. 2000). Similar to other studies, we found that both longer 

winter sea ice durations (Saba et al. 2014; Rozema et al. 2017; Schofield et al. 2017) and 

a slower rate of sea ice retreat in spring-early summer (Garibotti et al. 2005; Annett et al. 

2010; Gonçalves-Araujo et al. 2015) contributed to high phytoplankton abundance and a 

diatom-dominated phytoplankton community. 

Winter sea ice duration was much shorter (40 days) in 2017 than in 2018, and the 

phytoplankton community had less diatoms and more mixed flagellates. Wind speed and 

direction in early spring (September to October) can precondition the water column due 

to its effect on sea ice and consequently percent sea ice melt, which in turn could either 

serve to enhance (as in 2018-2019) or dampen (2017-2018) surface freshening and 

stratification in sync with percent meteoric meltwater, influencing phytoplankton biomass 

and species composition. Although the spring ice edge retreated later in 2018-2019 than 
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in 2017-2018 (26 December versus 3 December), the initial phytoplankton bloom 

occurred earlier due to relatively low (~30%) sea ice coverage starting in early 

November, allowing adequate light for phytoplankton growth. Sea ice then slowly melted 

through mid-January, further enhancing meltwater stratification and stabilizing the upper 

water column, conditions optimal for phytoplankton growth that in turn contributed to 

significantly higher chlorophyll-a concentrations in 2018-2019 (Rozema et al. 2017). In 

contrast, in 2017, there was > 50% sea ice coverage through most of November, likely 

inhibiting light penetration and subsequent phytoplankton growth. Dramatic reduction in 

sea ice coverage at the end of November indicates rapid, wind-driven advection of sea ice 

from the region, leading to negative sea ice meltwater values near Palmer Station and 

allowing high variability in N2, likely contributing to the significantly lower chlorophyll-

a concentrations seen during this season (Rozema et al. 2017).  

It is possible that with rapid wind-driven advection of sea ice from the region in 

2017, less sea ice algae were released to seed the coastal region near Palmer Station. This 

can be compared to 2018 when sea ice lingered and contributed more meltwater and 

potentially more seed populations, with higher associated chlorophyll-a concentrations in 

2018-2019 than in 2017-2018 (Ackley and Sullivan 1994; Van Leeuwe et al. 2018). 

Earlier sea ice advance in the autumn is expected to entrain higher concentrations of 

algae, therefore, the 16 day-earlier sea ice advance in autumn 2018 might also have 

contributed to increased phytoplankton concentrations in 2018-2019 (Garrison et al. 

1983). 

Silicate and nitrate were found at significantly higher concentrations in 2018-2019 

than in 2017-2018. Typically, years with reduced sea ice and higher wind-driven mixing 
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lead to higher nutrient injection into surface waters from deeper, nutrient-rich waters 

(Annett et al. 2010). Following this logic, we would expect to see higher nutrient 

concentrations in 2017-2018. However, there were faster wind speeds at the start of the 

growing season in 2018 (Ice Retreat Phase mean = 6.7 m s-1) than in 2017 (Ice Retreat 

Phase mean = 4.3 m s-1) that could have contributed to higher initial concentrations. 

Additionally, there were much larger nutrient drawdown events by high biomass blooms 

in 2018-2019 than in 2017-2018 that would be expected to lower seasonal nutrient 

concentrations, emphasizing that wind-driven mixing must have more than compensated 

for the larger nutrient drawdown in 2018-2019.  

Taxonomically, there were proportionally more mixed flagellates and 

prasinophytes in 2017-2018 and proportionally more diatoms and haptophytes in 2018-

2019. Dominance of diatoms and haptophytes (e.g., P. antarctica) has been associated 

with the marginal sea ice zone where the water column is highly stratified and cells have 

ample light (Garibotti et al. 2005), which could explain why we saw higher proportions 

of both in 2018-2019. Low light environments (e.g., deep mixed layer depths) have been 

found to favor mixed flagellates, thus a significantly higher proportion of mixed 

flagellates in 2017-2018 may be related to variable N2 during that year (Schofield et al. 

2017; Carvalho et al. 2019). Additionally, there was higher overall community diversity 

in 2017-2018, as large diatom blooms in 2018-2019 were dominated by only a few 

taxonomic groups. 
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3.5.2    Drivers of phytoplankton seasonal succession 
 

Following phytoplankton trends found in previous years at Palmer Station 

(Garibotti et al. 2005; Schofield et al. 2017), we confirmed three distinct successional 

phases in both years despite variability in the environmental drivers: a large diatom-

dominated Ice Retreat Phase, followed by a cryptophyte-dominated Peak Summer Phase, 

followed by a small diatom-enriched Late Summer Phase. This pattern matches the 

conceptual mandala developed by Behrenfeld et al. (2021). Community changes are 

driven by increases in the availability of limiting resources and subsequently overall 

growth conditions, and consider phytoplankton size, division rates, and loss rates (e.g., 

predation and sinking).  Increases in available resources via mechanisms such as wind-

driven mixing, changes in solar irradiance, coastal upwelling, etc. improve growing 

conditions that favor large phytoplankton species (e.g., diatoms) and allow phytoplankton 

division rates to accelerate, increasing phytoplankton concentrations. Bloom conditions 

deteriorate as resources are depleted, or as loss rates (e.g., predation, sinking) begin to 

exceed division rates.  

  The phytoplankton growing season initiates as limiting resources become less 

limiting – in the case of the WAP, this is primarily driven by seasonal increases in solar 

irradiance during spring sea ice retreat (Venables et al. 2013). Initial modest resource 

increases favor medium-sized species (e.g., small bloom-forming diatoms) that can 

rapidly accelerate division rates to achieve high maximum growth rates often before 

resources are depleted (Behrenfeld et al. 2021b), with eventual bloom termination as loss 

rates catch up to division rates. With sustained resources, larger species with slower 

acceleration of division rates and larger predator-prey lags begin to flourish (Behrenfeld 
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et al. 2021a), resulting in the large, centric diatom bloom seen during the Ice Retreat 

Phase. Overall growth conditions are maximized in years with protracted sea ice retreat 

(Annett et al. 2010), illustrated by higher peak phytoplankton biomass and a higher 

proportion of large, centric diatoms in 2018 compared to 2017. This late spring large, 

centric diatom bloom composed of species such as Thalassiosira spp. is also present in 

the Arctic, driven by upper water column stratification and seasonal increases in light 

availability (Lafond et al. 2019; Ardyna et al. 2020). This bloom terminates as inorganic 

nutrients are depleted and/or loss rates begin to exceed division rates.  

Due to reduced nutrient concentrations from the large diatom bloom in the Ice 

Retreat Phase, the next successional phase (Peak Summer Phase) favors mixotrophic 

phytoplankton such as WAP cryptophytes (Gast et al. 2014; Trefault et al. 2021), that can 

both photosynthesize and consume particulate organic matter amassed over earlier bloom 

phases (Edwards 2019; Behrenfeld et al. 2021a). Cryptophytes are often found in deeper, 

low-light conditions where they can supplement photosynthesis with phagotrophy (Goes 

et al. 2014), however, we saw an increase in surface water biomass during the Peak 

Summer Phase when PAR was highest. High-light environments could give mixotrophs a 

competitive advantage over heterotrophs, as they can supplement their carbon supply 

with photosynthesis (Edwards 2019). In addition, cryptophytes are especially well-

adapted to high-light environments due to specialized protective pigments (Mendes et al. 

2017). Contrary to other WAP studies (Moline et al. 2004; Mendes et al. 2017; Schofield 

et al. 2017; Pan et al. 2020), we did not find significant correlations between 

cryptophytes and low salinity glacial meltwater or high temperature. In fact, percent 

meteoric water during the Peak Summer Phase was below the seasonal mean in both 
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years (range = 3.5-4.6% and mean = 5.03% in 2017-2018; range = 2.6-3.9% and mean = 

4.52% in 2018-2019), surface temperatures did not reach seasonal maxima until the Late 

Summer Phase (mean Peak Summer Phase surface temperatures were 1.07°C and -

0.06°C compared to maximums of 1.74°C and 2.52°C for 2017-2018 and 2018-2019, 

respectively), and in 2018 the Peak Summer Phase occurred while there was still ~30% 

sea ice coverage. Thus, it is likely that biotic successional patterns drove this rise in 

cryptophytes rather than specific abiotic environmental drivers. This bloom terminates as 

resources are depleted, or losses begin to exceed division rates (Behrenfeld et al. 2021a).  

In the Late Summer Phase, we saw Behrenfeld et al. (2021a)’s cycle begin again, 

with increases in wind-driven mixing that replenished nutrients (e.g., iron) to surface 

waters and allowed for small diatoms (typically 10-20 μm centric diatoms) to bloom. Iron 

concentrations have been found to be important for shifting phytoplankton composition 

from a phytoflagellate-dominated community to a diatom-dominated community (Boyd 

et al. 2000). In the Palmer region, iron supply primarily comes from shallow sediments 

delivered to the surface waters by wind-driven vertical mixing (Sherrell et al. 2018). We 

did not sample iron in this study, but previously collected seasonal data in the Palmer 

region showed a 6-fold increase from late-January to mid-February with increases in 

wind speed and a deepened mixed layer depth (Carvalho et al. 2016), which matches the 

start time of this phase. The Last Summer Phase is characterized by variable mixed layer 

depths (as inferred from 25 m-averaged Brunt Vaisala Frequency, N2), driven by 

contrasting increases in wind speed and glacial meltwater inputs. These variable 

conditions may limit the duration and magnitude of this small diatom bloom and prevent 

the progression to larger species. Instead, we saw an increased proportion of mixed 
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flagellates, which could be the result of higher wind-mixing and decreasing daylength in 

late summer that selects for species that do well in wind-mixed low-light environments 

(Schofield et al. 2017; Carvalho et al. 2019).  

 In 2018-2019, the first half of the Late Summer Phase was characterized by a very 

large, stability-induced pennate diatom bloom (Late Summer Phase A). This bloom had 

almost twice as much biomass as any other bloom seen over both years, possibly because 

smaller diatoms have fast growth acceleration rates that allow them to reach high 

maximum growth rates quickly (Behrenfeld et al. 2021b), and because the wind event 

that preceded the bloom likely resuspended iron as well as macronutrients. This bloom 

also co-occurred with a pulse of glacial meltwater and increased stratification (i.e., very 

high N2), which has been seen in other field studies (Beans et al. 2008; Höfer et al. 2019; 

Pan et al. 2020). Additionally, Hernando et al. (2015) experimentally exposed 

phytoplankton populations from Potter Cove, Antarctica to low salinity conditions (30 

PSU) and found a decline in the abundance of large centric diatoms from ~90% on day 2 

to ~0% on day 7, and an increase in abundance of small pennate diatoms from ~0% on 

day 4 to ~95% on day 8. They attribute these changes to differing osmotic stress 

tolerances: in large centric diatoms, a decrease in salinity caused cell size increases, 

compression of chloroplasts, granularization of the protoplasm, and retraction of the 

cytoplasm, while some small pennate diatoms (e.g., Fragilariopsis cylindrus) may 

contain genes beneficial for adaptation to extreme environmental conditions in polar 

oceans and sea ice. Thus, high glacial meltwater during this bloom could select for small 

pennate diatoms. 
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 Over the course of the season, we observed a decreasing trend in median cell 

diameter in association with increasing percent meteoric water and decreased salinity. 

Stronger surface stratification due to increased ice melt can reduce nutrients in surface 

waters, giving an advantage to smaller phytoplankton with high surface-area-to-volume 

ratios and reduced sinking rates (Li et al. 2009). However, macronutrients do not appear 

to be limiting in either year, and Si:N > 2 also suggests no significant limitation by iron 

or other micronutrients (Clarke et al. 2008). As mentioned above, increased meteoric 

meltwater inputs could cause cell size and composition shifts associated with different 

species’ tolerances to osmotic stress, especially for diatoms (Hernando et al. 2015). Since 

diatoms contributed the highest annual percent composition to the population in low 

(44% in 2017-2018) and high (66% in 2018-2019) chlorophyll years, cell size shifts in 

diatoms are large contributors to the decreasing seasonal trend seen in overall 

phytoplankton cell size. 

 

3.5.3    HPLC versus IFCB-derived abundance and taxonomy 
 
 In general, HPLC and IFCB-derived biomass and percent taxa estimates agreed. 

There were positive, significant correlations between overall biomass for the two 

methods and for all taxonomic groups except haptophytes. Similar to other WAP studies 

(Kozlowski et al. 2011), the strongest relationships between HPLC and imaging (e.g., 

IFCB and microscopy) methods were seen in cryptophyte and diatom percent 

compositions, and weaker relationships were found for prasinophytes and mixed 

flagellates. Our results showed that HPLC methods underpredicted mixed flagellates 

relative to IFCB methods, in agreement with Kozlowski et al. (2011), who suggests this 
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is due to misclassifications of other cells within this group during microscopic analysis. 

Alternatively, pigment ratios derived by Kozlowski et al. (2011) for mixed flagellates 

could be missing a fraction of the population, which would suggest that IFCB and 

microscopy might be more reliable for methods for quantifying mixed flagellate 

abundance.  

 In our IFCB samples, we excluded all cells with a major axis length less than 20 

pixels (5.88 μm) prior to analysis, as these small cells are below the quantifiable limit of 

detection based on our instrument resolution, and thus have a high probability of being 

misclassified. P. antarctica is mostly found in the flagellate stage in the summer in the 

WAP region below 64° S, with cell diameters < 5 μm (Kozlowski et al. 2011; Biggs et al. 

2019). Since P. antarctica is the dominant haptophyte in our region (Annett et al. 2010), 

IFCB methods likely underestimated haptophyte abundances as many cells were likely 

excluded by our 5.88 μm screen, leading to the non-significant relationship found 

between IFCB and HPLC-estimated haptophyte percent composition. This also could be 

the reason for the slight overprediction of prasinophytes using HPLC compared to IFCB, 

and thus the weaker correlation between the two methods. 

 There were a few notable discrepancies in overall abundance between the two 

methods, particularly on 19 November 2018 and 21 January 2019, where HPLC showed 

peaks in chlorophyll-a that were absent or lessened when portrayed by IFCB biovolume. 

This discrepancy may not be an error in methodology and could instead reflect high 

chlorophyll-a to biovolume ratios during these two days. However, a potential source of 

error could be classification within “detritus” and “multiple” categories. Phytoplankton 

cells were commonly seen attached to detritus particles, or in large conglomerations. 
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These images were eliminated from the analysis as they could not be reliably sorted into 

a single taxonomic group. Although it is possible that excluding these groups reduced the 

biovolume in some samples, this does not seem to be the case for the days in question, as 

total biovolume including non-phytoplankton particles was still very low (see Fig. 1 in 

Nardelli et al. 2021). Although both peaks were dominated by centric diatoms which 

typically have diameters greater than 10 μm in this region (Annett et al. 2010), there are 

some species with diameters less than 5.88 μm (e.g., Minidiscus chilensis), therefore the 

size cut-off could be responsible for this difference between methods. The absent 21 

January 2019 peak could also be the result of preservation bias in the IFCB analysis, as 

preserved samples were found to have 48% less biovolume than live samples.  

 

3.5.4    Future implications 

Despite significantly different sea ice conditions and phytoplankton biomass 

between these two years, phytoplankton biomass began to increase when local sea ice 

concentration dropped below ~50%. The tight coupling between spring sea ice retreat and 

the start of the phytoplankton growing season leaves this ecosystem vulnerable to climate 

change-induced phenology shifts. From 1992-2015, spring sea retreat near Palmer Station 

shifted earlier by 1.28 days per year (Schofield et al. 2017), and this trend is expected to 

continue. Earlier sea ice retreat and subsequent water column stratification could shift the 

start of the growing season earlier: Henson et al. (2018) found that the Southern Ocean 

spring bloom advances by ~5-10 days per decade, which would result in a ~50-100 day 

advance by 2100. An advance in the spring phytoplankton bloom associated with earlier 

thermal stratification has already been seen in other systems, including high-altitude and 
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temperate lakes (Winder and Schindler 2004; Maeda et al. 2019) and temperate coastal 

oceans (Hunter-Cevera et al. 2016). This could lead to a mismatch between the timing of 

the spring bloom and optimal seasonal light levels, and to predator-prey mismatches 

where spring predators are unable to alter their phenology to match the changes in 

interannual spring phytoplankton bloom timing (Cushing 1990; Edwards and Richardson 

2004; Ardyna et al. 2014). 

Additionally, our results suggested protracted sea ice melt in the coastal region 

could be important for algal seeding, leading to high chlorophyll-a years dominated by 

diatoms. With increased frequency of stronger wind events along the WAP associated 

with increases in the positive phase of the Southern Annular Mode during austral summer 

(Thompson and Solomon 2002), it is possible that there may be more years like 2017 

when the sea ice was rapidly advected from the coastal region. The phytoplankton 

community seen in 2017-2018 may be representative of future phytoplankton 

communities without sea ice algal seeding, either because high intensity wind events 

clear the sea ice before local melting can occur, or if eventually there is no longer 

persistent winter sea ice. Although 2017-2018 held higher species diversity than 2018-

2019, years with low chlorophyll-a concentrations lead to less successful Antarctic krill 

recruitment (Saba et al. 2014), which has negative consequences for higher trophic levels 

(Constable et al. 2014). However, more frequent high intensity wind events throughout 

the summer could also lead to increased iron concentrations in surface waters due to 

increased sediment resuspension (Sherrell et al. 2018), leading to heightened primary 

production and a diatom-dominated community (Boyd et al. 2000), and therefore more 

successful krill recruitment. 
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Finally, the connection between increasing seasonal meltwater and decreasing 

phytoplankton cell size could be indicative of changes we might see with further 

warming and melting along the WAP. A shift to smaller phytoplankton could cause a 

shift in zooplankton from krill to smaller zooplankton species (e.g., microzooplankton), 

as krill are unable to capture particles < 10 μm due to the filter size of their feeding 

apparatus (McClatchie and Boyd 1983), and microzooplankton selectively feed on 

smaller phytoplankton (Garzio and Steinberg 2013). A predominance of 

microzooplankton in coastal waters near glaciers with high proportions of small cells has 

been seen in other studies (Beans et al. 2008; Garcia et al. 2019). Thus, a meltwater-

induced shift to smaller phytoplankton cells could cause the rise of a microbial food web, 

with microzooplankton grazing small phytoplankton cells, and krill consuming 

microzooplankton (Bernard et al. 2012). A longer food web could have important 

implications for carbon cycling (Sailley et al. 2013) and for krill lipid content (Ruck et al. 

2014), which in turn could negatively impact top predator populations. 

Although coastal WAP phytoplankton are tightly linked to ice-related physical 

dynamics (e.g., sea ice duration and concentration, sea ice and meteoric meltwater, mixed 

layer depth and strength of stratification/N2), they seem to be adaptable to year-to-year 

variation in environmental conditions as evidenced by the consistent seasonal succession 

between years in this study. Yet, there will likely be tipping points where changes in 

climate (e.g., warming, decreased sea ice, increased glacial meltwater) fundamentally 

change phytoplankton bloom phenology, total biomass, and community composition, 

with important implications for carbon export, food web structure, and energy transfer 

efficiency (Sailley et al. 2013). Further work is needed to assess whether the tendency 
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towards an earlier spring ice-edge retreat since 1992 (Schofield et al. 2017) has driven an 

earlier spring bloom timing along the coastal WAP, and how this might affect higher 

trophic levels via predator-prey mismatches. Seasonal zooplankton phenology studies in 

the coastal WAP would also be helpful for determining if there are interannual and 

seasonal community shifts that match the trends seen in our study. Additionally, 

collecting more seasonal iron measurements concurrent with phytoplankton biomass and 

species composition data would help to confirm whether a late summer pennate diatom 

bloom is driven by wind-driven iron resuspension or a higher tolerance to late-summer 

increases in glacial meltwater inputs in the Palmer region. However, our study is an 

important step towards defining the environmental drivers of seasonal and interannual 

phytoplankton community changes in coastal polar regions. 
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3.7    Tables 
 
Table 1. Compiled cell size (μm) metrics from both field seasons for each taxonomic 

group using Imaging FlowCytobot data. 

 
Taxonomic Groups n Min Max Median Std 

Cryptophytes 22161 4.11 19.77 8.61 1.39 
Mixed Flagellates  67870 4.08 60.94 5.65 2.03 
Haptophytes 11221 4.21 51.87 5.97 1.47 
Prasinophytes 5319 4.09 44.60 8.30 1.73 
Diatoms 75540 4.08 122.03 5.87 3.85 
     Centric Diatoms 15184 4.08 122.03 7.86 6.84 
          Chaetoceros spp. 659 4.11 57.16 6.56 9.78 
          Corethron pennatum 109 8.92 92.25 31.08 18.07 
          Eucampia antarctica 31 33.32 84.45 43.90 18.01 
          Dactyliosolen spp. 12 7.95 40.47 12.14 10.19 
          Odontella weissflogii 1 NA NA 53.29 NA 
          Probiscia spp. 12 16.72 73.57 45.47 16.26 
          Unidentified discoid diatoms 0-10 μm 8256 4.08 9.99 6.95 0.92 
          Unidentified discoid diatoms 10-15 μm 4183 10.00 15.00 12.93 1.29 
          Unidentified discoid diatoms 15-20 μm 1241 15.00 19.98 15.94 1.06 
          Unidentified discoid diatoms > 20 μm 680 20.00 122.03 35.91 19.52 
     Pennate Diatoms 60356 4.08 51.91 5.67 1.87 
          Amphiprora spp. 46 8.16 27.84 16.98 4.51 
          Cocconeis spp. 42 4.44 31.92 12.91 4.95 
          Cylindrotheca spp. 235 4.43 17.52 9.77 2.12 
          Licmophora spp. 42 5.55 38.41 15.32 5.96 
          Pseudo-Nitzschia spp.chains 499 5.15 30.76 14.53 3.87 
          Unidentified pennate diatoms 0-10 μm 58169 4.08 9.99 5.64 0.90 
          Unidentified pennate diatoms 10-15 μm 1093 10.00 14.97 11.05 1.16 
          Unidentified pennate diatoms 15-20 μm 105 15.05 19.97 17.50 1.46 
          Unidentified pennate diatoms > 20 μm 125 20.02 51.91 24.77 6.13 

 
 
 
Table 2. Annual sea ice indices for 2017-2018 and 2018-2019.  
 

 Advance Retreat Duration # Ice Days 
2017-2018 July 17, 2017 December 2, 2017 138 days 125 days 
2018-2019 July 1, 2018 December 26, 2018 178 days 177 days 
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Table 3. Interannual differences in environmental variables. Bold p-values indicate significant differences between years. 

 2017-2018 2018-2019 Kruskal-Wallis 
Test 

Variable n Mean Min Max Std n Mean Min Max Std Chi2 p 

SIC 77 22.16 0 65.00 25.03 77 32.57 0 96.00 14.86 3.97 0.05 
PAR 39 348.94 95.44 729.22 181.03 39 352.29 52.66 776.62 181.62 0.007 0.93 
Temp 38 0.65 -1.11 1.74 0.83 38 0.46 -1.03 2.52 0.84 1.71 0.19 

Sal 38 33.30 32.40 33.93 0.34 43 33.35 32.26 33.88 0.30 0.40 0.53 
% met 39 5.03 3.27 8.24 1.31 43 4.52 2.55 8.08 1.53 2.38 0.12 
% sim 39 -1.32 -2.89 -0.02 0.79 43 -0.95 -4.41 0.69 1.22 3.16 0.08 

N2 38 0.0001 -2.1x10-5 0.0004 0.0001 43 0.0002 1.3x10-5 0.0004 9.0x10-5 0.06 0.81 
WS 39 4.65 2.19 13.22 2.11 39 4.51 1.80 8.86 1.85 0.01 0.92 
NO3 39 21.23 15.51 25.65 2.55 43 22.49 12.20 29.57 3.79 4.25 0.04 
PO4 39 1.58 1.21 1.96 0.16 43 1.64 0.96 2.14 0.28 2.74 0.10 
SiO4 39 54.60 37.33 62.35 4.58 43 74.08 63.85 82.50 4.22 55.42 9.7x10-14 

 
* SIC = Sea Ice Concentration (%), PAR = photosynthetically active radiation (μmol sec-1 m-1), Temp = surface temperature (° C), Sal 

= surface salinity (PSU), % met = percent meteoric meltwater, % sim = percent sea ice melt, N2 = buoyancy frequency, WS = wind 

speed (m s-1), and nitrate (NO3), phosphate (PO4), and silicate (SiO4) have units of μmol L-1. 
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Table 4. Interannual differences in phytoplankton variables. Bold p-values indicate significant differences between years. 
 

 2017-2018 2018-2019 Kruskal-
Wallis Test 

Variable n Mean Min Max Std n Mean Min Max Std Chi2 p 

Chl-a 39 2.03 0.41 6.85 1.40 43 3.93 0.03 19.09 3.88 4.90 0.03 
H 35 2.22 1.21 2.83 0.36 35 1.97 0.64 2.65 0.53 3.69 0.05 

Biovolume 35 0.29 0.05 1.01 0.19 35 0.40 0.005 2.43 0.51 0.47 0.49 
Abundance 35 1341.84 55.36 3568.83 868.75 35 3937.79 7.59 36702.26 7778.31 0.01 0.91 

Median Diameter 35 6.71 4.98 11.48 1.43 35 6.27 5.24 12.73 1.26 2.76 0.10 

 
* Chl-a = HPLC-derived chlorophyll-a concentration (mg m-3), H = Shannon Diversity Index, Biovolume = IFCB-derived 

phytoplankton biovolume (μL L-1), Abundance = IFCB-derived phytoplankton cell abundance (cells mL-1), and Median Diameter has 

units of μm. 
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3.8    Figures 
 

 
 
Figure 1. (A) Map of West Antarctic Peninsula with blue box indicating the extents of 

the Palmer region shown in (B). 
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Figure 2. Historical timeseries for (A) number of sea ice days in the 50 km Palmer region 

and (B) annual mean surface chlorophyll-a at Station B. Red dots indicate 2017-2018 and 

2018-2019, and the dashed vertical line indicates the mean value for the displayed 

timeseries. 
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Figure 3. Seasonal (A and B) HPLC-derived chlorophyll-a and (C and D) IFCB-derived 

biovolume for each phytoplankton group. Pie chart insets show annual total percent (A 

and B) chlorophyll-a or (C and D) biovolume for each group. Grey areas in plots C and 

D indicate periods when IFCB results are based on preserved IFCB samples. Vertical 

dashed lines indicate divisions of seasonal succession phases (IR = Ice Retreat Phase, PS 

= Peak Summer Phase, and LS = Late Summer Phase). 
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Figure 4. (A and B) Seasonal chlorophyll-a concentration (green) overlaid with daily 

percent sea ice concentration (black line) for (A) 2017-2018 and (B) 2018-2019. Percent 

sea ice melt for (C) 2017-2018 and (D) 2018-2019, where positive values indicate sea ice 

melt, negative values indicate sea ice formation. Vertical dashed lines indicate divisions 

of seasonal succession phases (IR = Ice Retreat Phase, PS = Peak Summer Phase, and LS 

= Late Summer Phase). 
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Figure 5. Seasonal chlorophyll-a concentrations (green) for 2017-2018 (left column) and 

2018-2019 (right column) overlaid with environmental variables (black lines): (A and B) 

Surface PAR, (C and D) temperature, (E and F) salinity, (G and H) percent meteoric 

water, (I and J) 25 m-averaged N2, and (K and L) 5 day-averaged wind speed. Vertical 
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dashed lines indicate divisions of seasonal succession phases (IR = Ice Retreat Phase, PS 

= Peak Summer Phase, and LS = Late Summer Phase). 

 

 

 
 
Figure 6. Seasonal chlorophyll-a concentrations (green) for 2017-2018 (left column) and 

2018-2019 (right column) overlaid with nutrient data (black lines): (A and B) nitrate, (C 

and D) phosphate, and (E and F) silicate (note that the two years are showing different 

scales). Vertical dashed lines indicate divisions of seasonal succession phases (IR = Ice 

Retreat Phase, PS = Peak Summer Phase, and LS = Late Summer Phase). 
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Figure 7. Seasonal chlorophyll-a concentrations (green) for (A) 2017-2018 and (B) 

2018-2019 overlaid with H diversity values. Vertical dashed lines indicate divisions of 

seasonal succession phases (IR = Ice Retreat Phase, PS = Peak Summer Phase, and LS = 

Late Summer Phase). 

 
 

 
 
Figure 8. Diatom seasonal diversity for 2017-2018 (left column) and 2018-2019 (right 

column) for: (A and B) all diatoms, (C and D) centric diatoms, and (E and F) pennate 

diatoms. Solid black line indicates cell abundance, and vertical dashed lines indicate 

divisions of seasonal succession phases (IR = Ice Retreat Phase, PS = Peak Summer 

Phase, and LS = Late Summer Phase). Unid = unidentified. 
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Figure 9. Seasonal decrease in median cell diameter for (A) 2017-2018 and (B) 2018-

2019. Grey region shows range of diameters for each sampling day. Red dashed line 

shows linear decreasing trend in median diameter, with Kendall rank correlation metrics 

displayed in the textbox in the top right corner of each subplot. Vertical dashed lines 

indicate divisions of seasonal succession phases (IR = Ice Retreat Phase, PS = Peak 

Summer Phase, and LS = Late Summer Phase). 
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3.9    Supplementary tables 
 
Supplementary Table 1. Interannual differences in phytoplankton taxonomy. Bold p-values indicate significant differences between  
 
years. 
 
 

  2017-2018 2018-2019 Kruskal-Wallis 
Test 

Taxa Variable n Mean Min Max Std n Mean Min Max Std Chi2 p 

Diat 

Chl 39 1.38 0.20 4.80 1.13 43 2.92 0.01 16.36 3.50 2.45 0.12 
% Chl 39 67.60 8.17 93.55 20.94 43 64.79 29.75 95.19 19.71 0.50 0.48 
Biovol 35 0.13 0.01 0.32 0.08 35 0.25 0.005 1.72 0.36 0.01 0.91 

% Biovol 35 43.76 10.00 73.45 17.98 35 56.36 18.18 96.88 23.63 5.38 0.02 

Crypt 

Chl 39 0.28 0 4.24 0.71 43 0.45 0.01 2.02 0.56 3.10 0.08 
% Chl 39 13.33 0 61.79 16.48 43 14.85 0.28 56.14 14.77 0.66 0.42 
Biovol 35 0.05 0.003 0.39 0.09 35 0.07 0 0.42 0.10 0.34 0.56 

% Biovol 35 15.70 1.00 73.90 19.73 35 15.48 0 46.69 13.59 0.52 0.47 

MF 

Chl 39 0.20 0 1.37 0.22 43 0.41 0 2.43 0.62 0.13 0.72 
% Chl 39 10.10 0 20.07 4.99 43 12.60 0 49.44 14.56 2.23 0.13 
Biovol 35 0.09 0.02 0.43 0.08 35 0.07 0.0004 0.36 0.07 3.60 0.06 

% Biovol 35 32.18 11.60 57.86 12.14 35 22.03 1.14 58.45 14.97 10.17 0.001 

Pras 

Chl 39 0.09 0.03 0.69 0.12 43 0.05 0 0.24 0.05 7.48 0.006 
% Chl 39 4.78 1.21 14.05 3.31 43 1.83 0 7.43 1.73 21.60 3.35x10-6 

Biovol 35 0.02 0.0004 0.06 0.02 35 0.006 0 0.04 0.008 5.94 0.01 
% Biovol 35 6.33 0.16 19.05 6.50 35 2.65 0 27.00 5.05 6.65 0.01 
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Hapto 

Chl 39 0.06 0 0.32 0.06 43 0.11 0 0.27 0.08 12.98 0.0003 
% Chl 39 4.18 0 13.33 3.61 43 5.93 0 18.90 5.12 1.81 0.18 
Biovol 35 0.005 9.41x10-5 0.02 0.004 35 0.01 0 0.09 0.02 4.25 0.04 

% Biovol 35 2.03 0.10 8.47 1.80 35 3.48 0 13.87 3.13 4.35 0.04 

 
* Diat = Diatoms, Crypt = Cryptophytes, MF = Mixed Flagellates, Pras = Prasinophytes, and Hapto = Haptophytes.  

* Chl = Total HPLC-derived chlorophyll-a concentration (mg m-3) attributed to each taxa, % Chl = percent total HPLC-derived 

chlorophyll-a attributed to each taxa, Biovol = Total IFCB-derived biovolume (μL L-1) attributed to each taxa, and % Biovol = percent 

total IFCB-derived biovolume attributed to each taxa.
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3.10    Supplementary figures 
 
 

 
 
Supplementary Figure 1. Comparison of live versus preserved IFCB samples for (A) 

total biovolume, (B) total cell density, and (C-E) percent biovolume for each broad 

taxonomic group for (C) 22 December 2017, (D) 26 December 2017, and (E) 28 

December 2017. Comparisons were conducted using surface samples at Station B.  
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Supplementary Figure 2. Seasonal percent composition derived from the IFCB for 

cryptophytes and diatoms in (A) 2017-2018 and (B) 2018-2019, showing seasonal 

phytoplankton successional phase divisions (vertical dashed lines; IR = Ice Retreat Phase, 

PS = Peak Summer Phase, and LS = Late Summer Phase). 

 

 
 
Supplementary Figure 3. HPLC-derived chlorophyll-a concentration compared to 

IFCB-derived phytoplankton biovolume for each sampling day in each season. The black 

line indicates the linear fit between the two variables, and the Kendall p and τ values for 

that fit are indicated on the figure.  
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Supplementary Figure 4.  Percent of total HPLC-derived chlorophyll-a compared to 

percent of total IFCB-derived phytoplankton biovolume in each sample for broad 

taxonomic groups: (A) diatoms, (B) cryptophytes, (C) prasinophytes, (D) mixed 

flagellates, and (E) haptophytes. For each subplot, the black dashed line shows the 1:1 

relationship and the black solid line indicates the linear fit between the two variables. 

Kendall p and τ values for each linear fit are also indicated on each subplot.  

 



 

 

76 

 

4. Assessing ecological drivers of phytoplankton bloom 
phenology in coastal Antarctica 

 
 
4.1    Abstract 
 

West Antarctic Peninsula (WAP) coastal waters are characterized by large 

phytoplankton blooms that support a productive ecosystem and impact regional carbon 

biogeochemistry. Bloom phenology is driven by bottom-up processes that impact 

division rates and top-down processes including grazing that impact loss rates. 

Quantifying seasonal phytoplankton division and loss rates is important for understanding 

changes in lower trophic level dynamics. Autonomous underwater glider deployments 

from 2008-2020 were used to model summer phytoplankton bloom dynamics near 

Palmer Station, Antarctica. Climatologies were calculated for phytoplankton 

accumulation, division, and loss rates, which were compared to bottom-up (light and 

nutrients) and top-down (grazing) controls to identify ecological drivers. Two distinct 

seasonal phases were detected: (1) December and January were characterized by high 

light and shallow mixed layers that concentrated phytoplankton allowing grazers to keep 

pace with phytoplankton division rates and resulting in generally stable biomass with a 

small mixotrophic cryptophyte bloom; (2) February and March were characterized by 

decreasing light and increasing wind speeds that deepened the surface mixed layer and 

resuspended sedimentary iron to fuel a large, autumn bloom. Our results indicate that 

environmental changes along the WAP (e.g., warming temperatures, melting sea ice and 

glaciers, increased cloudiness, and more frequent storms) are likely to impact both 

bottom-up and top-down controls of bloom phenology, shifting the species composition 

and timing of these blooms and thereby altering food web structure and function.    
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4.2    Introduction 
 
 Southern Ocean phytoplankton play an important role in regulating global 

climate, and are responsible for 43% of global ocean sequestration of anthropogenic CO2 

(Frölicher et al. 2015). Around 10% of this sequestered CO2 makes it to the deep ocean 

(>1000 m) via vertical transport (the biological pump) to be stored for thousands of years 

(Eppley and Peterson 1979; Passow and Carlson 2012). Changes in phytoplankton bloom 

dynamics and community structure have important implications for biological pump 

efficiency (Brown et al. 2019). 

 The coastal waters of the West Antarctic Peninsula (WAP) are characterized by 

large, seasonal phytoplankton blooms that support a productive ecosystem (Ross et al. 

1996). The WAP is currently undergoing significant change, with air and ocean 

temperatures increasing by  >5°C and >1°C since 1951, respectively (Meredith and King 

2005; Turner et al. 2005), and concurrent decreases in sea ice extent and duration 

(Stammerjohn et al. 2008b). In addition, the northern WAP has experienced increased 

wind speeds and cloudiness, and decreased phytoplankton biomass associated with a shift 

to smaller cells (Montes-Hugo et al. 2009).  

Understanding how these environmental changes impact phytoplankton bloom phenology 

is critical for assessing future health and productivity of coastal WAP ecosystems.  

Phytoplankton bloom dynamics are balanced by bottom-up controls (e.g., 

nutrients and light) that impact division rates, and top-down (e.g., grazing) and other 

processes (e.g., sinking, advection) that impact loss rates (Behrenfeld 2010). Light 

limitation is the primary control of phytoplankton growth rates in the Southern Ocean, 

explaining 66% of growth rate variability (Arteaga et al. 2020). The light conditions that 
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phytoplankton experience are a combination of incoming solar radiation (e.g., seasonal 

variation in daylength and weather), how deep into the water column the incoming 

radiation penetrates (e.g., changes in the diffuse attenuation coefficient), and the depth of 

the surface mixed layer (driven by wind-mixing, water mass properties, surface warming 

and freshening, etc.). Phytoplankton adapt to changing light conditions 

(photoacclimation) via changes in cellular physiology in an attempt to balance 

photosynthetic electron transport with metabolic demands (i.e., nutrient uptake; Kana et 

al. 1997). Physiological changes include altering the size of the light harvesting antenna 

of reaction centers, or changing the total number of reaction centers (Falkowski and 

Laroche 1991). The result is a change in cellular chlorophyll concentration— high light 

results in a decrease in chlorophyll synthesis, and low light results in an increase in 

chlorophyll synthesis. Increasing light and nutrients lead to higher cell division rates until 

they saturate, and decreasing light and nutrients decrease division rates (Geider and La 

Roche 1994; Arteaga et al. 2016; Behrenfeld et al. 2016).  

 Loss rates can include grazing, advection, and sinking. Overall grazing rates along 

the WAP vary interannually and seasonally with shifts in zooplankton communities. In 

nearshore and shelf waters, dominant macrozooplankton taxa (krill Euphausia superba, 

Thyanoessa macrura, Euphausia crystallorophias; the salp Salpa thompsoni; and the 

pteropod Limacina helicina) remove <1% of primary production when salps are not 

blooming, and up to 169% of primary productivity during salp blooms (Bernard et al. 

2012). In comparison, copepods remove <1 to 11% of primary production (Gleiber et al. 

2016), and microzooplankton usually remove between 30 to 70% of primary production 

(Garzio et al. 2013). Advection rates vary depending on location, however in the Palmer 
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Deep canyon region (located at the southern end of Anvers Island in the northern WAP), 

surface residence times are correlated to wind strength, with higher wind speeds 

associated with lower residence times (Kohut et al. 2018). Surface residence times reach 

a maximum of 5 days (Kohut et al. 2018), while models show that shallow residence 

times (< 20 m) reach a maximum of 20 days, and residence times at 50 m reach a 

maximum of 30 days (Hudson et al. 2021).   

 The goals of our study were to model summer phytoplankton bloom phenology in 

the coastal WAP and identify the ecological drivers of seasonal rate changes. To do this, 

we used 12 years of autonomous underwater glider data collected in the Palmer Deep 

canyon over various periods of the austral summer to calculate high-resolution (1-day) 

climatologies of phytoplankton accumulation, division, and loss rates. These were 

compared to bottom-up and top-down forcings. Results showed a transition in 

phytoplankton photophysiology between January and February driven by decreases in the 

light regime, wind-driven mixing, and decreased zooplankton grazing pressure. These 

results suggest that long-term environmental changes along the WAP (e.g., increased 

cloudiness, increased wind speeds, increased surface warming and ice melt) are likely to 

impact the timing, species composition, and cell size dynamics of seasonal phytoplankton 

blooms, in turn altering food web structure and carbon biogeochemistry. 

 

4.3    Methods 
 
4.3.1    Glider data collection 
 
 Data was collected using Slocum gliders deployed from Palmer Station, 

Antarctica during austral summer field seasons from 2008-2020 (Table 1 and Fig. 1), 
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encompassing 13,071 profiles collected over 436 days during 30 deployments. These 

deployments were part of the Palmer Antarctica Long-Term Ecological Research Project 

(PAL-LTER; 2010-2019), Project CONVERGE (2014-2015) and Project SWARM 

(2019-2020). Gliders are buoyancy-driven, autonomous underwater vehicles that provide 

high-resolution measurements of physical and bio-optical properties in the water column. 

Our analysis includes all available concurrent physical and biological glider profiles in 

the Palmer Deep canyon. Each glider was equipped with a Sea-Bird Conductivity-

Temperature-Depth (CTD) sensor and a WET Labs Inc. Environmental Characterization 

Optics (ECO) puck, which measured chlorophyll-a fluorescence and optical backscatter 

(β; see Table 1 for backscatter wavelengths of each puck), and data was binned into 1 m-

depth increments prior to analysis. Glider CTD measurements were compared with a 

calibrated ship CTD sensor on deployment and recovery to ensure data quality, as well as 

with a calibrated laboratory CTD prior to deployment. Glider chlorophyll-a fluorescence 

and β were converted from raw counts using the factory calibration scale factor and dark 

counts. If  >1% of chlorophyll-a fluorescence or β values were negative, the dark count 

was iteratively decreased until <1% of computed values were negative (Woo and 

Gourcuff 2021). Chlorophyll-a fluorescence values were corrected for non-

photochemical quenching using methods in Xing et al. (2012).  

Particulate spikes in β profiles were removed using a 7-point running median 

filter (Briggs et al. 2011). Values were then converted to particulate backscattering 

coefficients using the equation in Boss and Pegau (2001): 

 

𝑏%& = 2𝜋𝜒𝛽&(𝜃) , 
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where β' is total measured β minus the filtered sea water contribution (Zhang and Hu 

2009) for the given sensor centroid angle indicated in Table 1, and χ is the particulate 

conversion value for that angle (Sullivan et al. 2013). Depending on the backscatter 

sensor, β was measured at either 470 nm or 700 nm (Table 1), so an additional step was 

used to convert bbp(700) to bbp(470) for uniformity in our analysis: 

 

𝑏%&(470) = 	𝑏%&(700) ×
()*
)**

+*.)-
, 

 

where -0.78 is a global estimate of particle size index (γ) by Boss et al. (2013).  

 

4.3.2    Mixed layer depth calculations 
 

The seasonal mixed layer depth (MLD) was calculated from profiles of 

temperature and salinity according to Carvalho et al. (2017) and is based on the depth of 

the maximum buoyancy frequency (max(N2)). A quality index value (QI; Lorbacher et al. 

2006) was calculated for each vertical profile and was used to filter out profiles without a 

well-defined surface mixed layer above the calculated MLD (QI < 0.5). Chlorophyll-a 

was averaged and integrated over the MLD (Chlavg (mg m-3) and Chlint (mg m-2), 

respectively), and daily averages of MLD, Chlavg, and Chlint, were computed prior to 

calculating phytoplankton growth, loss, and accumulation rates to reduce spatial 

variation.  
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4.3.3    Palmer Station weather data 
 

Wind speed (m s-1; RM Young, Model 05108-45) and surface photosynthetically 

available radiation (PAR) measurements for 400-700 nm (mol photons m-2 h-1; LI-COR 

model LI-190SA quantum sensor) were obtained from an automated weather station 

located just behind Palmer Station. Daily averages were calculated from 2-minute data 

for both variables. There were no PAR data collected from 1 March 2019 to the end of 

our sampling period (31 March 2020) due to a wiring issue; however, the weather station 

also collected total incoming solar irradiance (W m-2) collected by a LI-COR model LI-

200SA pyranometer during the entire sample period (1 October 2010 – 31 March 2020). 

Therefore, the linear relationship between PAR and solar irradiance for the period of 

overlap (1 October 2010 – 1 March 2019; y = 0.01x + 0.06, R2 = 0.94, p < 0.0001; see 

Supplementary Fig. 1) was used to fill in missing PAR values. 

 

4.3.4    Phytoplankton division, accumulation, and loss rates 
 
 The WAP undergoes dramatic seasonal changes in sunlight, and phytoplankton 

acclimate via physiological responses. Decreases in light (e.g., a deepening mixed layer 

depth) often lead to an increase in cellular chlorophyll concentrations and a concurrent 

decrease in division rates, and increases in light (e.g., a shallowing mixed layer depth) 

often lead to decreases in cellular chlorophyll due to high-light acclimation (Fox et al. 

2020). Thus, photoacclimation should be taken into consideration when calculating 

phytoplankton division rates in our region. We used a photoacclimation model (PaM) 

from Behrenfeld et al. (2016), which takes into account deep and shallow mixing 
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scenarios to calculate phytoplankton carbon biomass (Cphyto) to chlorophyll-a ratios 

(θPaM): 

 

𝜃./0 =	𝜃10 	Δ𝜃20, whereby 

𝜃10 = 19	 ∙ 	𝑒(*.*4-	∙	
!"#$.&'

((&*$) 	) and  Δ𝜃20 =	 $8	9
(,$.-'	∙!"#)

$8	9(,0	∙	12)
 , 

 

k(490) is the diffuse attenuation coefficient at 490 nm (m-1) calculated as (Morel et al. 

2007): 

 

𝑘(490) = 0.0166 + 0.0773	 ∙ 	𝐶ℎ𝑙/:;
*.<)$=, 

 

and Ig is the daily mixed layer median light level (mol photons m-2 h-1) calculated as 

(Behrenfeld et al. 2005): 

 

𝐼; = 𝑃𝐴𝑅	 ∙ 	𝑒𝑥𝑝+>((?*)	∙	
345
6  . 

 

Phytoplankton specific division rates, µ (d-1) for the mixed layer were then calculated for 

each day (Fox et al. 2020): 

 

𝜇 = KL $
@53

	 ∙ (−16.80) + 1.57O ∙ L $
@!73

	 ∙ (47.03) + 0.0125OP 	 ∙ Q1 −	𝑒(+=	∙.A")R , 
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and MLD-averaged and -integrated Cphyto (Cavg and Cint, respectively) were subsequently 

calculated by multiplying θPaM by Chlavg or Chlint, respectively. 

Phytoplankton specific net accumulation rates, r (d-1), were calculated for the 

mixed layer depth from temporal changes in Cphyto between two time points (Behrenfeld 

et al. 2013): 

 

𝑟 = 	 $
∆C
	 ∙ ln TD89:,:-

D89:,:6
U, when MLD is deepening and > Z(0.415) 

𝑟 = 	 $
∆C
	 ∙ 	 ln TD7<2,:-

D7<2,:6
U, when MLD is shoaling or < Z(0.415). 

 

Z(0.415) is the isolume depth (m), below which light is insufficient for photosynthesis (I 

= 0.415 mol photon m-2 d-1; Letelier et al. 2004), and is calculated as (Boss and 

Behrenfeld 2010): 

 

𝑍(0.415) = log L *.($=
*.?-×.A"

O 	 ∙ 	 L F=>
GHI(*.*$)

O, 

 

and zeu is the depth at which light is 1% of its surface value and is calculated from the 

equation in Morel et al. (2007): 

 

𝑙𝑜𝑔$*(𝑍9J) = 1.524 − 0.436𝑥 − 0.0145𝑥K + 0.0186𝑥4, where x = log10(Chlsurface). 

 

∆𝑡 was typically 1 since we used daily-averaged measurements, but there were occasional 

gaps in measurements that increased this value to 2 or 3. Finally, phytoplankton specific 



 

 

85 

 

loss rates, l (d-1) for the mixed layer were calculated by subtracting r from µ, because r = 

µ - l.  

 

4.3.5    Station E data  
 

Annual sample collection at Palmer Station, Antarctica (Fig. 1) has been 

conducted by the PAL-LTER since 1991 at two locations: an inshore station (B, bottom 

depth of ~75 m) and an offshore station (E; bottom depth of ~200 m). These stations are 

sampled twice a week from when the sea ice breaks up enough to allow small boat 

activity (~mid-October/November) to late March. Inclement weather and heavy sea ice 

can limit sampling in this region, leading to occasional gaps in our dataset. Glider 

deployments begin a bit later (~December) because open water conditions (minimal to no 

sea ice) are necessary for successful remote piloting.   

Because the gliders over the Palmer Deep Canyon sampled closer to the offshore 

station, nutrient and pigment data collected at Station E were used in our analysis, 

obtained from the Palmer LTER web portal (http://pallter-

data.marine.rutgers.edu/erddap/index.html). Methods for nutrient analysis can be found 

in Kim et al. (2016), and methods for pigment analysis can be found in Schofield et al. 

(2017). Nitrate, phosphate, and silicate concentrations were integrated over the surface 50 

m for each sampling day. Output taxa proportions for each pigment-derived 

phytoplankton group (diatoms, cryptophytes, prasinophytes, haptophytes and mixed 

flagellates including both dinoflagellates and other phytoflagellates) were averaged over 

the surface 50 m for each sampling day. 
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4.3.6    Climatology calculations 
 
 Seasonal climatologies from 1 December to 15 March were created using all 

available glider data from 2008 to 2020, excluding one January 2014 deployment (ru01-

403) due to anomalously high chlorophyll-a concentrations (Supplementary Fig. 2). First, 

daily averages were calculated for all variables (wind speed, MLD, PAR, Ig, Chlavg, Cavg, 

bbp(470), and phytoplankton division, loss, and accumulation rates) for each year, then, 

these annual daily averages were averaged across all years. Because Station E was 

sampled bi-weekly, weekly averages of nutrients and phytoplankton pigments were 

calculated for each year before averaging across all years. All climatologies were 

smoothed with a 3-point moving mean.  

 

4.3.7    Statistical analyses 
 
 To compare monthly climatological differences, seasonal climatology values were 

binned by month (December through March, with March only including 1 March – 15 

March due to glider data coverage) for each variable. One-way analysis of variance 

(ANOVA) tests were used to determine if there were significant differences between 

months, and Tukey-Kramer post-hoc tests were subsequently used to show which months 

had significantly different means.  

 

4.4    Results 
 
4.4.1    Modeled Cphyto 

 
 PaM-derived Cphyto values (ranging from 38.75 to 241.75 mg m-3) were much 

higher than widely used optical models that calculate Cphyto from linear relationships with 
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bbp obtained from global satellite (Behrenfeld et al. 2005) and cruise (Graff et al. 2015) 

measurements (ranging from 19.48 to 101.80 mg m-3; Fig. 3). Additionally, there were 

seasonal patterns in the slope of our bbp(470) and Cphyto relationship, with the steepest 

slope found in February, followed by December and January, and no significant 

relationship found in March (Fig. 3).  

 

4.4.2    Seasonal climatology 
 
 We saw distinct seasonal shifts in our environmental climatologies from the early 

(December and January) to late (February and March) summer. Wind speeds decreased 

from a maximum of 5.19 m s-1 in early December to values < 3 m s-1 in early January, 

then rose to significantly higher values in February and March (maximum wind speeds > 

5 m s-1; Fig. 4A and 5A). In response, MLDs were variable but shallow (~10 to 30 m) in 

December and January, significantly deepening to 30 to 40 m in February, and 

significantly shallowing to ~20 to 30 m in March with increased glacial meltwater inputs 

(Fig. 4B and 5B; Carvalho et al. 2016). PAR and Ig were high and variable throughout 

December and January (mean = 1.39 mol photons m-2 h-1 and 0.35 mol photons m-2 h-1, 

respectively), and decreased significantly in February and March (mean = 0.90 mol 

photons m-2 h-1 and 0.11 mol photons m-2 h-1, respectively; Fig. 4C and 5C). Nitrate, 

phosphate, and silicate all decreased from December to February (from 1547.41 to 

1058.92, 89.40 to 74.99, and 3848.69 to 3003.60, respectively), and then increased 

slightly from February to mid-March (up to 1170.50, 78.76, and 3068.47, respectively; 

Fig. 4D-F and 5D-F). 
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 Similar shifts were observed in phytoplankton seasonal dynamics. MLD-averaged 

chlorophyll-a and Cphyto closely mirrored each other, with a moderate bloom in late 

December reaching maximum concentrations of 7.84 mg Chl-a m-3 and 195.88 mg C m-3, 

respectively, and a large bloom in February with significantly higher chlorophyll-a and 

Cphyto concentrations than other months, reaching 9.77 mg Chl-a m-3 and 205.24 mg C m-

3, respectively (Fig. 6A and 7A-B). Chlorophyll-a:bbp(470) ratios showed significant 

increases from December to January (December mean = 863.61, January mean = 

1171.18) and January to February (January mean = 1171.18, February mean = 1923.84; 

Fig. 6B and 7C). These dynamics reflected shifts in phytoplankton species composition, 

primarily between relative diatoms and cryptophyte abundance as the relative proportion 

of mixed flagellates and Type 4 Haptophytes remained consistent over time. In early 

December, diatoms and cryptophytes comprised approximately 77% and 8% of the 

chlorophyll-a biomass, respectively, shifting to 41% diatoms and 35% cryptophytes in 

mid-January, and back to 77% diatoms and 3% cryptophytes by early March (Fig. 6C).  

Phytoplankton specific division and loss rates were low and variable in December 

and January (mean = 1.42 d-1 and 1.40 d-1, respectively), increasing significantly in 

February with the bloom (mean = 1.56 d-1 and 1.58 d-1, respectively), and decreasing 

again in March (mean = 1.40 d-1 and 1.38 d-1, respectively; Fig. 6D and 7D-E). 

Accumulation rates showed no significant monthly differences (ANOVA p = 0.82) but 

showed both a decrease in variability over time (December range = 1.29, January range = 

0.84, February range = 0.57, and March range = 0.53; Fig. 6E), and a significant increase 

in the cumulative sum of accumulation rates from December to January (Fig 6F and 7F).  
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4.5    Discussion 
 
4.5.1    Seasonal bloom phenology 
 

The Disturbance and Recovery Hypothesis (Behrenfeld et al. 2013) states that 

blooms form when an environmental disturbance disrupts the balance between the 

phytoplankton specific growth and loss rates, and blooms terminate as ecosystem 

feedbacks recouple predators and prey. This hypothesis describes seasonal phytoplankton 

dynamics in four phases (Behrenfeld et al. 2019): (1) the Accumulation Phase in spring 

when the mixed layer shoals, light levels increase, and phytoplankton division rates 

exceed loss rates leading to positive biomass accumulation rates; (2) the Equilibrium 

Phase in summer, when a shallow mixed layer concentrates predators, allowing loss rates 

to catch up to division rates and stabilizing phytoplankton biomass; (3) the Depletion 

Phase in late summer into autumn, when the mixed layer deepens, light levels decrease, 

and division and accumulation rates decline; and (4) the Dilution Phase in winter, when 

deep mixing reduces the encounter rate between phytoplankton and grazers, allowing 

division rates to exceed loss rates and initiating a bloom. Because we only have summer 

climatologies of division and loss rates, we cannot fully assess the validity of this 

hypothesis in our study region, however, our data appear to capture parts of both the 

Equilibrium Phase in December and January, and the Depletion Phase in February and 

March.  

 In the austral spring (October to November), increasing solar irradiance and sea 

ice retreat alleviates light limitation and stabilizes the upper water column, shoaling the 

MLD and restricting phytoplankton to well-lit and nutrient replete surface waters (Vernet 

et al. 2008; Ducklow et al. 2013; Venables et al. 2013; Kim et al. 2016). These conditions 
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allow for phytoplankton division rates to increase significantly, outpacing loss rates and 

leading to a huge, large-celled diatom bloom that reflects the culmination of the 

Accumulation Phase (Chapter 3; Behrenfeld et al. 2013). Unfortunately, we are missing 

this phase in our analysis due to difficulties navigating gliders in icy waters. 

However, austral summer (December and January) reveals post-bloom conditions 

that match the Equilibrium Phase, where continued stratification with decreasing wind 

speeds and high PAR correspond with increases in grazers, allowing loss rates to catch up 

to growth rates (Behrenfeld et al. 2013). This is reflected in the net losses seen in 

December (negative cumulative sum of accumulation rates; Fig. 6F and 7F), and the 

shallower slope in the Cphyto:bbp(470) relationship that indicates the presence of non-algal 

scatters like zooplankton, bacteria, detritus, etc. (Fig. 3). The bloom we see in late 

December also has a high proportion of cryptophytes (Fig. 6C), which are mixotrophs 

and likely flourish with post-bloom detritus (Gast et al. 2014; Trefault et al. 2021). 

Additionally, WAP cryptophytes are well-suited to high light levels due to specialized 

protective pigments (Mendes et al. 2017), and high PAR conditions allow mixotrophs to 

supplement their carbon supply with photosynthesis, driving prey to low densities and 

outcompeting heterotrophs (Edwards 2019). 

In February and March, the system switches to the Depletion Phase, where 

increasing winds deepen the MLD and decrease Ig levels, often corresponding with 

decreased phytoplankton specific division and loss rates (Behrenfeld et al. 2013). 

However, autumn blooms can occur during this phase, as seen in our study, if there are 

increases in the nutrient supply or a dilution effect that decreases grazing pressure 

(Behrenfeld et al. 2013). In February, we saw a large bloom and concurrent increases in 
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division rates (Fig. 6A and 6D). This bloom is likely dominated by small pennate diatoms 

(Fig. 6C; Chapter 3), which are known to have very fast growth rates (Behrenfeld et al. 

2021b). Since Ig is low, these increases in division rates are likely spurred by increases in 

nutrients. In the Palmer Deep canyon, iron supply primarily comes from shallow 

sediments delivered to the surface waters by wind-driven vertical mixing (Sherrell et al. 

2018). In the one summer of iron data that was collected in the region (January to March 

2015), surface iron concentrations spike from ~1 nmol kg-1 to 7 nmol kg-1 in early 

February corresponding with increasing wind speeds and MLD deepening (Carvalho et 

al. 2016). We see a slight increase in macronutrient data from February to March that 

could support this hypothesis (Fig. 5D-5F). The increase in Chl:bbp(470) is likely driven 

by both photoacclimation, where decreases in light increase chlorophyll synthesis (Kana 

et al. 1997), and nutrient-driven increases in growth rates, resulting in the synthesis of 

chlorophyll to help with ATP and NADPH production (Behrenfeld et al. 2016). The 

termination of the February bloom, decreasing growth rates, and decreases in the 

cumulative sum of accumulation rates co-occur with the shoaling of the MLD, indicating 

reduced wind-driven mixing of iron to surface waters, and increased concentrations of 

grazers within the MLD.  

Previous work has shown a decreasing trend in phytoplankton cell size throughout 

the summer growing season (Chapter 3). This matches seasonal decreases in light and 

nutrient availability. Larger cells are less susceptible to photoinactivation due to 

excessive light energy, and therefore are better suited to deal with short-term exposure to 

high light conditions than small cells (Key et al. 2010). On the other hand, small cells 

have larger effective optical cross-sections, which makes them better suited for low light 
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conditions (Key et al. 2010). Smaller cells also have a greater surface area to volume 

ratio allowing more efficient nutrient uptake in nutrient-poor environments (Finkel et al. 

2010). Thus, as PAR and nutrients decrease from December through March, cell size is 

likely to decrease as well. Smaller cells typically exhibit faster growth rates (Finkel et al. 

2010), however this could be counteracted by declining light and nutrient availability in 

the late summer. 

 

4.5.2    Phytoplankton specific division and loss rates 
 
 There are limited estimates of phytoplankton division rates along the WAP that 

we can compare our results to. Moline (1996) found rates of 0.01-0.1 d-1, while Garzio et 

al. (2013) found rates up to 0.99 d-1. These are both lower than the division rates in our 

study that ranged from 1.01 to 1.73 d-1. However, our results fall within the range of other 

Antarctic studies, which found division rates ranging from 0.11 to 2.6 d-1 (See Table 2 in 

Garzio et al. (2013) and references therein). It is possible that our division rates are 

skewed high due to potential biases in the models we used. The equations to calculate 

θPaM and our division rates both depend on global estimates and laboratory experiments 

that may not be representative of productive, coastal regions (Behrenfeld et al. 2016; Fox 

et al. 2020). Regional comparisons of PaM-derived and satellite-derived Cphyto:Chl ratios 

found lower PaM-derived ratios for the South Pacific (the closest region to Antarctica 

tested; Behrenfeld et al. 2016). In the equation used to calculate division rates (Fox et al. 

2020), PaM-derived Cphyto:Chl ratios are in the denominator, so an underestimate of 

Cphyto:Chl could overestimate phytoplankton division rates. In the future, the model could 

be adapted to reflect the conditions of coastal Antarctica, but for the purposes of this 
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study, these models provide reasonable estimates of division rates that reflect important 

seasonal trends.  

While bottom-up drivers of phytoplankton growth rates (e.g., light and nutrients) 

have been consistently measured by PAL-LTER in our region, loss rates such as grazing 

and advection have received far less attention. Only a few studies have looked at grazing 

rates along the WAP (see Introduction), and the total grazing rate is variable depending 

on the species that are present at a particular time and location. The highest grazing rates 

(up to 169% of primary production; Bernard et al. 2012) occur during salp blooms, which 

are not present in the Palmer region in every year and whose grazing impact is likely 

averaged out in our loss rate climatology. In years without salps, macrozooplankton graze 

<1% of primary production (Bernard et al. 2012), copepods graze up to 11% (Gleiber et 

al. 2016), and microzooplankton graze ~30 to 70% (Garzio et al. 2013), resulting in a 

remaining ~20% of primary production that could be put towards phytoplankton biomass 

accumulation. 

Life cycle dynamics of zooplankton species also play a role in grazing rates. In 

summer, E. superba krill adult populations concentrate near the shelf break, while 

juveniles are most abundant inshore (Siegel et al. 2013; Conroy et al. 2020). In early 

autumn, adult krill move inshore and deeper in the water column to utilize deep food 

resources in troughs and canyons during the winter (Cleary et al. 2016; Reiss et al. 2017; 

Nardelli et al. 2021a), while juvenile and larval krill remain shallow to feed on under-ice 

algae (Bernard et al. 2018; Walsh et al. 2020). Juvenile krill have higher grazing rates 

than adult krill due to higher metabolic rates and lower lipid stores (Schmidt and 

Atkinson 2016). Therefore, following strong recruitment years, coastal regions may have 
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higher summertime krill grazing rates. As adult krill move inshore in autumn, this could 

add to coastal grazing pressures, however, their deeper location in the water column and 

more diverse diet (e.g., copepods and seabed phytodetritus) might lessen this impact 

(Polito et al. 2013; Schmidt et al. 2014). 

The other main sources of loss (advection and sinking) are physical processes. 

Based on studies from the Palmer Deep canyon, particle residence times within the mixed 

layer are between 2 and 30 days (Kohut et al. 2018; Hudson et al. 2021). This means that 

~3% to 20% of phytoplankton biomass is lost from the canyon via advection each day. 

Based on our growth rates of 1.01 to 1.73 d-1, doubling times are between 0.40 to 0.68 

days, which means phytoplankton biomass can double at least 7.35 to 12.5 times before 

the phytoplankton particles are advected out of the Palmer Deep canyon (assuming a 

residence time of 5 days). Loss rates due to sinking will vary over the field season, with 

faster rates in the late spring when large phytoplankton species are present, and slower 

rates in the late summer when smaller species are present (Finkel et al. 2010), unless 

facilitated by repackaging of cells through zooplankton ingestion/egestion. However, 

sinking rates are complicated further by the strength of vertical mixing, and strong 

stratification in the late spring could impede sinking, while increases in wind-mixing in 

late summer could accelerate sinking.  

 
4.5.3    Relationship between Cphyto and bbp(470) 
 
 Cphyto values derived from optical algorithms using bbp do not appear to work well 

in coastal Antarctica (Fig. 3). The high productivity of this region, with large, seasonal 

and sometimes episodic blooms during austral summer, led to chlorophyll and 

backscatter values much higher than those used in previous optical algorithms. 
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Behrenfeld et al. (2005) and Graff et al. (2015)’s models use chlorophyll-a values 

ranging from 0.14 to 0.80 mg m-3 and 0.026 to 1.13 mg m-3, respectively, while our 

study’s values ranged from 1.21 to 10.03 mg m-3. Similarly, Behrenfeld et al. (2005) and 

Graff et al. (2015)’s models use bbp(470) values ranging from 0.0012 to 0.005 m-1 and  

0.00046 to 0.0038 m-1, respectively, while our study’s values ranged from 0.0016 to 

0.0083 m-1. This discrepancy could account for the underestimation of Cphyto values 

provided by their algorithms relative to the PaM-derived Cphyto.  

 Seasonality was another important component in our Cphyto model choice. Optical 

models, such as in Behrenfeld et al. (2005) and Graff et al. (2015), assume a stable non-

algal background component based on global observations. However, the algal 

contribution to particulate organic carbon (POC), and to bbp, varies spatially and 

temporally. Cphyto:POC ratios have been found to be inversely related to productivity 

(Bellacicco et al. 2016), with algal contributions to total POC ranging from 30-70% in 

tropical oligotrophic regions and ~10-30% in polar regions and the equatorial Pacific 

(Arteaga et al. 2016). Backscatter due to non-algal scatters was also found to vary more 

than one order of magnitude over the course of a year, often closely related to changes in 

overall phytoplankton biomass (Bellacicco et al. 2016). 

 A potential cause of reduced Cphyto:POC ratios at high latitudes is the increased 

ratio of zooplankton to phytoplankton in these productive regions (Ward et al. 2014). At 

high latitudes, significant decoupling is seen between phytoplankton and zooplankton, 

where zooplankton abundance lags rapid phytoplankton growth (Ward et al. 2014). Thus, 

during a phytoplankton boom, a large proportion of the scattering particles is 

phytoplankton that increases the ratio of Cphyto:POC, and post-bloom, there is an 
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increased proportion of non-algal scatterers (detritus, zooplankton, bacteria, viruses, etc.) 

that decrease the Cphyto:POC ratio. These dynamics likely drive the observed seasonal 

patterns in the Cphyto:bbp(470) relationship we saw in the Palmer region (Fig. 3), with the 

steepest slope in February, which contained blooming conditions for over half the month, 

the next steepest slope in December, which had a bloom at the very end of the month, and 

the shallowest slope for January, which did not experience a bloom. The high 

productivity and dynamic seasonal conditions in coastal Antarctica call for a Cphyto model 

that relies on local mechanistic drivers of phytoplankton physiology rather than global 

optical relationships, and Behrenfeld et al. (2016)’s photoacclimation model seemed to 

produce reasonable Cphyto estimates that provided useful insight into phytoplankton 

bloom phenology. 

Because we looked at bbp rather than POC, coastal bbp values could be influenced 

by non-organic scatterers as well, such as glacial flour. Glacial meltwater is found to 

increase by 2-8% from November to March (Meredith et al. 2021), releasing particles 

that have been concentrated within the ice and increasing the turbidity of coastal waters 

(Dierssen et al. 2002). These particles could increase the non-algal backscattering 

contribution, reducing Cphyto:bbp ratios.  However, meltwater particles sink out rapidly as 

they are transported from shore, with radiance reflectance decreasing by half from Station 

B to Station E (3.7 km offshore; Dierssen et al. 2002), so glacial flour is unlikely to have 

a large contribution to bbp values beyond the immediate coastal region (e.g., in the Palmer 

Deep canyon).  
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4.5.4    Conclusion 
 
 Using high resolution glider data, we were able to create climatologies that 

highlighted persistent seasonal patterns in phytoplankton physiology and bloom 

phenology. Understanding these seasonal baselines is critical to predicting the impacts of 

future environmental changes. Following the large spring bloom associated with sea ice 

retreat, we observed net losses in December and shallow Cphyto:bbp(470) slopes in 

December and January that were indicative of an increased presence of grazers. This 

suggests a link between the timing of the spring phytoplankton bloom and the rise in 

heterotrophic and mixotrophic organisms that take advantage of post-bloom conditions. 

There is a tight coupling between sea ice retreat and the start of the phytoplankton 

growing season (Chapter 3), and sea ice retreat is trending earlier near Palmer Station 

(1.28 days per year from 1992-2015; Schofield et al. 2017), which could advance the 

spring bloom as seen in the broader Southern Ocean (~5-10 days per decade; Henson et 

al. 2018). This could lead to predator-prey mismatches, where zooplankton grazers may 

not be able to shift their phenology earlier in response to advancing phytoplankton 

blooms (Cushing 1990; Edwards and Richardson 2004; Ardyna et al. 2014). 

 Our results showed phytoplankton physiological responses to changes in light and 

nutrient availability. In February, the MLD deepened and PAR decreased, yet we saw a 

surprising increase in phytoplankton biomass, growth rates, and Chl:bbp(470), likely due 

to increases in wind-driven iron resuspension (Sherrell et al. 2018). Stronger wind events 

are predicted to increase in frequency as a result of trends in the Southern Annular Mode 

and El Niño/La Niña (Hall and Visbeck 2002), which could lead to more frequent iron 

resuspension events during the summer and subsequent increases in phytoplankton 
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growth rates and bloom events. The increase in Chl:bbp(470) ratios are also indicative of 

photoacclimation as PAR levels decrease. Wind speeds and cloud cover have increased in 

the northern WAP from 1978-2006 (Montes-Hugo et al. 2009), which would deepen the 

MLD and decrease PAR. Long-term changes in light availability could impact 

phytoplankton species composition and cell size, favoring smaller species with faster 

growth rates that are better suited to photoacclimation in low light conditions (Key et al. 

2010). On the other hand, salp blooms along the WAP have become more frequent 

(Atkinson et al. 2004), and shifts to smaller phytoplankton cells could increase 

microzooplankton abundance (Ducklow et al. 2012), both increasing grazing impacts, 

trophic coupling, and phytoplankton loss rates. Increased grazing potential could curb 

phytoplankton bloom development, emphasizing the importance of the balance between 

bottom-up and top-down controls of bloom phenology. 

The Antarctic continental shelf comprises a small portion of the Southern Ocean 

(1.28 million km2), yet has disproportionately high primary production rates (mean = 460 

mg C m-2 d-1; Arrigo et al. 2008). Phytoplankton blooms along the shelf and coast not 

only fuel productive coastal ecosystems, but also have outsized impacts on atmospheric 

carbon sequestration and export. To fully understand these impacts, future studies should 

focus on capturing a full annual bloom cycle, using technology such as profiling floats or 

moorings to avoid ice and battery concerns associated with long-term glider deployments, 

and quantifying loss terms including grazing and advection directly throughout the 

productive period. 
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4.7    Tables 
 
Table 1. Information on the 30 glider deployments used in analysis. Start and end dates represent dates when the glider was the in 

Palmer Deep region. Shading indicates deployments within the same summer field season. 

 
Deployment 

Name 
Project Start 

Date 
End 
Date 

Duration Backscatter 
Sensor 

Backscatter 
Wavelength 

Backscatter 
Sensor 
Angle 

ru05-086 LTER 12/13/08 12/22/08 9 BB3 470 124° 
ru06-063 LTER 12/02/09 12/17/09 15 BB3 470 124° 
ru05-195 LTER 01/08/11 01/12/11 4 BB3 470 124° 

ud134-197 LTER 01/10/11 01/14/11 4 FLBBCD 700 124° 
ud134-200 LTER 01/16/11 01/31/11 15 FLBBCD 700 124° 
ru05-248 LTER 12/14/11 12/28/11 14 BB3 470 124° 

ud134-256 LTER 12/21/11 01/02/12 12 FLBBCD 700 124° 
ru05-276 LTER 02/16/12 03/01/12 14 BB3 470 124° 
ru06-370 LTER 12/07/12 12/09/12 2 BB3 470 124° 
ru25d-372 LTER 12/18/12 12/21/12 3 BB2FL 470 124° 
ru26d-373 LTER 12/23/12 12/25/12 2 BB2FL 470 124° 
ru01-403 LTER 01/04/14 01/16/14 12 BB3 470 124° 
ru26d-439 LTER 12/25/14 12/27/14 2 BB2FL 470 124° 
ud134-443 CONVERGE 01/05/15 01/21/15 16 FLBBCD 700 124° 

unit191-440 CONVERGE 01/05/15 02/26/15 52 FLBBCD 700 124° 
ru05-442 CONVERGE 01/06/15 01/14/15 8 BB3 470 124° 
ru05-444 CONVERGE 01/15/15 02/01/15 17 BB3 470 124° 
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ud134-445 CONVERGE 01/22/15 02/15/15 24 FLBBCD 700 124° 
ru05-447 CONVERGE 02/01/15 02/08/15 7 BB3 470 124° 
ru05-471 LTER 02/02/16 02/17/16 15 BB3 470 124° 
ru24-494 LTER 01/17/17 01/30/17 13 BB3 470 124° 
ru26d-528 LTER 12/11/17 12/13/17 2 FLBBCD 700 124° 
ru25d-530 LTER 12/22/17 12/24/17 2 FLBBCD 700 124° 
ru32-555 LTER 01/02/19 01/18/19 16 FLBBCD 700 124° 

ud476-594 SWARM 01/05/20 01/25/20 20 FLBB 700 142° 
unit507-593 SWARM 01/09/20 02/20/20 42 FLBBCD 700 124° 

ru32-595 SWARM 01/11/20 03/11/20 60 FLBBCD 700 124° 
ud476-596 SWARM 01/30/20 02/01/20 2 FLBB 700 142° 
ud476-598 SWARM 02/04/20 02/10/20 6 FLBB 700 142° 
ud476-601 SWARM 02/14/20 03/11/20 26 FLBB 700 142° 
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4.8    Figures 
 

 
 
Figure 1. Map of the Palmer Deep region, with location along the WAP highlighted by 

the black box on the inset. Red dots indicate the 13,071 glider profiles used in our 

analysis, the green triangle marks Palmer Station, and the purple triangle marks Station E.  
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Figure 2. Seasonal (December 1 – March 15) coverage of annual glider deployments in 

the Palmer Deep region.  
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Figure 3. Daily climatology values from 2008-2020 of PaM-derived Cphyto versus 

bbp(470). The two dashed black lines indicate modeled relationships from Behrenfeld et 

al. (2005) (B05, y = 13000x - 4.55) and Graff et al. (2015) (G15, y = 12128x + 0.59). 

Colored lines represent significant monthly linear relationships between the two 

variables: December y = 31720x - 22.67, R2 = 0.86, p < 0.001; January y = 26874x + 

16.49, R2 = 0.92, p < 0.001; February y = 74410x - 77.42, R2 = 0.86, p < 0.001. 

December n = 31, January n = 31, February n = 28, March n = 11. 
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Figure 4. Seasonal (December 1 – March 15) climatologies of environmental variables 

from 2008-2020: (A) wind speed, (B) mixed layer depth, (C) PAR (black line) and Ig (red 

line) , (D) NO3 concentration, (E) PO4 concentration, and (F) SiO4 concentration. Shaded 

bounds represent ± 1 standard deviation of annual daily values. 
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Figure 5. Monthly differences of daily climatology values for (A) wind speed, (B) mixed 

layer depth, (C) Ig, (D) NO3 concentration, (E) PO4 concentration, and (F) SiO4 

concentration. One-way ANOVA p-values are indicated in the top right of each subplot, 

and lowercase letters indicate significant differences between months (different letters 

indicate significant differences) from Tukey-Kramer post-hoc results. (A-C) December n 

= 31, January n = 31, February n = 28, and March n = 11. (E-F) December n = 5, January 

n = 4, February n = 4, March n = 3. For each box plot, the horizontal line represents the 

median value, the top and bottom box limits represent the 25th and 75th percentiles, 

whiskers represent the full range of non-outlier observations, and multiplication (×) 

symbols represent outliers. 
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Figure 6. Seasonal (December 1 – March 15) climatologies of phytoplankton variables 

from 2008-2020: (A) MLD-averaged chlorophyll-a (green line) and Cphyto (black line) 

concentrations, (B) MLD-averaged chlorophyll-a:bbp(470) ratios, (C) proportions of 

phytoplankton taxa derived from HPLC, (D) division (blue line) and loss (red line) rates, 

(E) net accumulation rate, and (F) the cumulative sum of total accumulation rate. Shaded 

bounds represent ± 1 standard deviation of annual daily values. 
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Figure 7. Monthly differences of daily climatology values for (A) chlorophyll-a, (B) 

Cphyto, (C) chlorophyll-a : bbp(470) ratio, (D) division rate, (E) loss rate, and (F) 

cumulative sum of net accumulation rates. One-way ANOVA p-values are indicated in 

the top right of each subplot, and lowercase letters indicate significant differences 

between months (different letters indicate significant differences) from Tukey-Kramer 

post-hoc results. December n = 31, January n = 31, February n = 28, and March n = 11. 

For each box plot, the horizontal line represents the median value, the top and bottom box 

limits represent the 25th and 75th percentiles, whiskers represent the full range of non-

outlier observations, and multiplication (×) symbols represent outliers. 
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4.9    Supplementary Figures 
 
 

 
 
Supplementary Figure 1. Relationship between daily-averaged solar irradiance and 

daily-averaged PAR from 1 October 2010 to 1 March 2019. Equation in top left corner 

was used to calculate missing PAR values in time series.  

 
 
 

 
 
Supplementary Figure 2. Annual summer timeseries of (A) chlorophyll-a, (B) Cphyto, 

and (C) bbp(470). 
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5. Krill availability in adjacent Adélie and gentoo penguin 
foraging regions near Palmer Station, Antarctica 

 
 
5.1    Abstract 
 

The Palmer Deep canyon along the West Antarctic Peninsula is a biological 

hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin 

rookeries at the canyon head. Nearshore studies have focused on physical mechanisms 

driving primary production and penguin foraging, but less is known about finer-scale krill 

distribution and density. We designed two acoustic survey grids paired with conductivity-

temperature-depth (CTD) profiles within adjacent Adélie and gentoo penguin foraging 

regions near Palmer Station, Antarctica. The grids were sampled from January to March 

2019 to assess variability in krill availability and associations with oceanographic 

properties. Krill density was similar in the two regions, but krill swarms were longer and 

larger in the gentoo foraging region, which was also less stratified and had lower 

chlorophyll concentrations. In the inshore zone near penguin colonies, depth-integrated 

krill density increased from summer to autumn (January to March) independent of 

chlorophyll concentration, suggesting a life history-driven adult krill migration rather 

than a resource-driven biomass increase. The daytime depth of krill biomass deepened 

through the summer and became decoupled from the chlorophyll maximum in March as 

diel vertical migration magnitude likely increased. Penguins near Palmer Station did not 

appear to be limited by krill availability during our study, and regional differences in krill 

depth match the foraging behaviors of the two penguin species. Understanding fine-scale 
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physical forcing and ecological interactions in coastal Antarctic hotspots is critical for 

predicting how environmental change will impact these ecosystems.  

 
5.2    Introduction 
 

The West Antarctic Peninsula is characterized by high summer primary 

productivity, large krill stocks, and abundant penguins, whales, and seals (Ross et al. 

1996). Although the entire inner continental shelf is highly productive, penguin colonies 

are distributed heterogeneously (Fraser and Trivelpiece 1996), which has been related to 

the presence of deep submarine canyons that extend from the continental shelf break to 

the land margin and transport warm (>1°C), high-nutrient Upper Circumpolar Deep 

Water inshore (Couto et al. 2017). The interaction between the ocean currents and 

bathymetry in these canyons serves to concentrate and promote phytoplankton growth 

(Kavanaugh et al. 2015; Carvalho et al. 2019), and to aggregate Antarctic krill 

(Euphausia superba), supporting large higher trophic level populations (Santora and 

Reiss 2011). Few studies have investigated local-scale krill distributions within these 

canyon hotspots and their direct impact on predator foraging ecology. 

The West Antarctic Peninsula is undergoing significant warming and melting, 

leading to a latitudinal climate gradient with warm, moist sub-polar conditions 

propagating south to replace cold, dry polar conditions (Stammerjohn et al. 2012; Cook et 

al. 2016). The Palmer Deep submarine canyon, located near the U.S. research base 

Palmer Station, is in the transition zone between polar and sub-polar climates, making it 

an ideal location to study ecosystem changes. Polar, ice-obligate Adélie penguins 

(Pygoscelis adeliae) have high breeding site fidelity and natal philopatry (i.e., they 

repeatedly return to their birthplace to breed), and colonies in the Palmer region have 
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existed for hundreds to thousands of years (Emslie 2001). With sea ice loss and increased 

snowfall, local Adélie penguin populations have declined ~90% since the 1970s (Fraser 

et al. 2020). Concurrently, sub-Antarctic, ice-intolerant gentoo penguins (Pygoscelis 

papua), established colonies near Palmer Station in 1994 and have been increasing ever 

since (Fraser et al. 2020). In the Palmer region, both species feed almost exclusively on 

krill (Fraser and Hofmann 2003; Pickett et al. 2018), and krill abundance in the region 

remained relatively stable from 1993 to 2013 (Steinberg et al. 2015). However, from 

1976 to 2016 there was a krill abundance decline in the southwest Atlantic sector, and a 

southward range contraction that concentrated krill distribution along the West Antarctic 

Peninsula shelf (Atkinson et al. 2019). This is notable because further warming could 

cause additional range contractions and decreased krill biomass near Palmer Station 

(Klein et al. 2018), which in turn could increase penguin foraging efforts and decrease 

breeding success (Fraser and Hofmann 2003; Chapman et al. 2011). 

Adélie and gentoo penguins are central place foragers, and nearly a decade of 

penguin satellite tag data near Palmer Station shows each species forages ~8 to 25 km 

from their respective colonies within two spatially segregated foraging habitats (Fig. 1; 

Cimino et al. 2016; Pickett et al. 2018). Adélie penguins breeding on Humble and 

Torgerson Islands forage mainly over the northern flank of the Palmer Deep canyon at 

shallow depths (mean 17.1 ± 8.8 m; Pickett et al. 2018). This region is characterized by 

fresher, coastally-influenced waters with shallow mixed layer depths (MLDs), slower 

currents, longer residence times (1 to 4 days), and higher chlorophyll concentrations 

(Carvalho et al. 2016; Kohut et al. 2018). Gentoo penguins breeding on Biscoe Point 

forage over the southern flank of the canyon and into the Bismarck Strait, often at deeper 
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depths (mean 41.5 ± 23.6 m; Pickett et al. 2018). This region is more offshore-influenced 

with intrusions of warm and nutrient-rich Upper Circumpolar Deep Water, deeper MLDs, 

faster currents, shorter residence times (0.2 to 2 days), and lower chlorophyll 

concentrations (Carvalho et al. 2016; Kohut et al. 2018). 

Despite the importance of krill within this ecosystem, little is known about their 

role linking physical and primary production dynamics to penguin foraging. Previous 

studies show that austral summer krill distributions in the Palmer Deep canyon are 

influenced by physics (e.g., tidal cycles, MLD, winds) and phytoplankton concentration 

(Bernard and Steinberg 2013; Cimino et al. 2016; Bernard et al. 2017) and that foraging 

penguins respond to physical characteristics such as surface convergent features and tides 

(Oliver et al. 2013, 2019). Our study is the first to document seasonal krill dynamics 

specific to the two penguin foraging regions and describe differences in krill availability 

for the respective penguin populations. Using data collected over one austral summer, we 

assess (1) differences in krill availability (depth-integrated density, spatial and vertical 

distributions, and swarm structure) between the two penguin foraging regions, (2) 

associations between these patterns and regional oceanographic properties, and (3) 

implications for penguin foraging behavior. The surveys created for this study are the 

start of a new dataset introduced to the Palmer Antarctica Long-Term Ecological 

Research (LTER) project, designed to provide data on nearshore krill distributions at 

spatial and temporal scales that are relevant to penguin foraging ecology. Our results 

emphasize the importance of organismal life histories in understanding ecological 

interactions over seasonal scales, which is crucial for predicting how continued 
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environmental change will impact krill and penguin populations in ecologically important 

coastal areas.  

 

5.3    Methods 

5.3.1    Survey design 

Survey design was based on nine years of penguin satellite tag data (2009-2018) 

indicating the key foraging regions for established Adélie and gentoo penguin colonies 

near Palmer Station. Methods for processing tag data and calculating the penguin 

foraging 2D kernel density estimations shown in Fig. 1 are outlined in Cimino et al. 

(2016) and Pickett et al. (2018). Two 20-nautical mile acoustic surveys were centered in 

each species’ foraging region (Fig. 1). Each survey was paired with five conductivity-

temperature-depth (CTD) profiling stations located midway across each northwest-

southeast survey leg to collect ancillary physical oceanographic and phytoplankton data. 

Each survey was run weekly over one austral summer season (January to March 2019) 

during the daytime (approximately 9:00 to 15:00 local) pending weather. When possible, 

the two surveys were run on consecutive days, however weather sometimes increased the 

interval to three days. Two additional early-season surveys were conducted on November 

28, 2018 in the Adélie region and on December 18, 2018 in the gentoo region. A total of 

25 surveys were run over the season, 14 in the gentoo foraging region and 11 in the 

Adélie foraging region. 
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5.3.2    Acoustic data collection 

Surveys were conducted aboard a 10-m-long rigid-hulled inflatable boat equipped 

with a hull-mounted, downward-facing Simrad EK80 single-frequency (120 kHz) 

transducer (Kongsberg Maritime, Kongsberg, Norway). During all surveys, 1 kW pulses 

at 256 ms duration were transmitted once per second. Geographic positions were 

simultaneously logged using the vessel’s Global Positioning System. Acoustic surveying 

speed averaged 5 knots to ensure high-quality data while allowing for the longest feasible 

survey distance. The system was calibrated mid-season in the field using the standard 

sphere method (Foote 1990), whereby a 38.1 mm tungsten carbide calibration sphere with 

known acoustic properties was suspended below the transducer and moved within the 

acoustic beam.  

 

5.3.3    Krill net sampling 

To inform acoustic processing, E. superba were collected from the RV Laurence 

M. Gould in the Palmer Deep canyon using a 2 x 2 m square frame Metro net with 700 

µm mesh towed obliquely. Five net tows were conducted from January 6 to 8, 2019 

(three tows down to 120 m and two krill-targeted tows to 20 m and 25 m, respectively), 

and six net tows were conducted from February 3 to 5, 2019 (two tows to 120 m, one 

krill-targeted tow to 100 m, two double tow-yos to 60 m, and one double tow-yo to 75 

m). Length measurements were made for a random subsample of 100 E. superba, or all 

E. superba caught in each tow if there were < 100 krill (Standard Length 1 of Mauchline 

1980). Krill length-frequencies were calculated in 1 mm bins separately for January, 

February, and both months combined. Gaussian mixture models were fit to the three 
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length-frequency distributions using the MATLAB function fitgmdist. Based on visual 

examination of the length-frequency histograms for the different time periods, three 

length modes were selected for the analysis. The model output gives the mean of each 

length mode and the mixing proportion for each mode (probability that an observation 

comes from that mode).  

 

5.3.4    Acoustic data processing 

Raw acoustic data from the 120 kHz transducer were processed using Myriax 

Echoview version 10.0. Estimated background noise levels were subtracted from the 

echogram, and surface noise (top 4 m) and the ocean bottom were removed before 

analysis. The calibration from the transducer was applied to the echogram and adjusted 

for speed of sound and absorption coefficients derived from CTD profiles taken during 

each survey.  

Volume backscattering strength (dB re 1 m-1) due to E. superba was isolated 

using a -70 dB threshold (Lawson et al. 2008). This threshold was estimated based on the 

maximum distance that krill can maintain visual contact with other krill and reflects a 

packing density of 1.7 ind. m-3. In addition to E. superba, the krill species Thysanoessa 

macrura was present in the study area during the survey period. In most cases, the -70 dB 

threshold and swarm detection parameters (see below) likely excluded T. macrura, which 

is distributed more evenly in space than E. superba and forms diffuse aggregations that 

are acoustically distinct from those of E. superba (Daly and Macaulay 1988; Lawson et 

al. 2008). Therefore, the contribution of T. macrura to estimated krill biomass in this 

study is likely minor. The tunicate Salpa thompsoni has a similar target strength (TS) to 
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krill (-85 to -65 dB at 120 kHz; Wiebe et al. 2010), however, during the study period, no 

salps were encountered in the net tows or seen floating on the surface, which is common 

in years when salps are abundant.  

Because ~98% of krill biomass is contained in patches or swarms (Fielding et al. 

2014), swarms were isolated and used for our analysis. Krill swarms were detected using 

the ‘School Detection module’ in Echoview. The software detected swarms with a 

minimum length of 4.5 m and a height of 2 m, and linked swarms within 15 m 

horizontally and 5 m vertically of each other. These parameters were determined based 

on the resolution of our acoustic data, guided by methods in Tarling et al. (2018). 

Detected swarms that were too small to be corrected for beam geometry were removed 

from the analysis (Diner 2001). 

Acoustic noise limited detection of swarms deeper than 250 m, however, this 

limitation should have minimal impact on our biomass estimates as most studies show 

that summertime krill swarms typically reside in the top 150 m of the water column (e.g., 

Miller and Hampton 1989). High phytoplankton productivity in summer and early 

autumn likely resulted in little to no krill benthic feeding, which is usually a result of 

reduced feeding success in surface waters (Schmidt et al. 2011). Additionally, this 

analysis is focused on krill availability to penguins in the Palmer region, which typically 

forage in the top 150 m of the water column (Pickett et al. 2018).  

During our 25 survey days, a total of 3521 krill swarms were detected. Individual 

swarm features were calculated including mean length (m), mean height (m), and area 

(m2). Volume backscattering strength was integrated within each krill swarm, resulting in 

an area backscattering coefficient (sa; m2 m-2) value. Depth-integrated krill sa values were 
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similarly calculated by integrating volume backscattering strength from the surface to 

either 250 m or the seafloor, whichever was shallower, in 10-m horizontal increments 

along each survey track. To characterize the depth distribution of krill, volume 

backscattering strength was also integrated within 10-m horizontal by 1-m vertical bins 

for each survey, providing an sa value for each grid cell.  

The sa values from individual krill swarms, depth-integrated survey segments, and 

1-m vertical bins were all converted to density (g wet weight [WW] m-2) following 

methods in Reiss et al. (2008). Krill TS at 120 kHz was calculated using the simplified 

stochastic distorted-wave Born approximation model (Conti and Demer 2006) based on 

krill length-frequencies from either January, February, or both months combined. To 

remove extreme outliers, 99% of krill length-frequencies were used (Tarling et al. 2009). 

Surveys conducted before January 17 used January length-frequencies, surveys between 

January 17 and 25 used both months’ length-frequencies, and surveys after January 25 

used February length-frequencies.  

Krill density (g WW m-2) in individual krill swarms, depth-integrated survey 

segments, and 1-m vertical bins was calculated by multiplying sa values by an area 

scattering conversion factor (CF) for the respective length-frequency distribution: 

 

CF= ∑  fb × w(Lb)B
b=1
∑  fb × σ(Lb)B
b=1

 , 

 

where B is the total number of length-frequency bins, b, fb is the frequency for each 

length-frequency bin, w (g per krill) is the wet weight (WW) of an individual krill as a 

function of body length (L; mm), calculated using the model developed from 
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Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) 

2000 survey data in the Scotia Sea (Hewitt et al. 2004): 

 

w = 2.236 x 10-6 × L3.314, 

 

and s (m2 per krill) is the backscattering cross-section of an individual krill as a function 

of body length: 

 

σ =10TS(L) 10⁄ . 

 

Total biomass (g WW) in individual krill swarms, depth-integrated survey segments, and 

1-m vertical bins was calculated by multiplying the density of a krill swarm or bin by its 

area in m2.  

 

5.3.5    Environmental data  

At each profiling station, CTD (SeaBird Electronics Seacat SBE 19plus sensor) 

and chlorophyll a fluorescence measurements (Wet Labs ECO fluorometer sensor) were 

made down to 120 m depth or within 10 m of the bottom at shallower stations. These 

downcast data were averaged in 1-m depth bins. Chlorophyll a fluorescence was 

calibrated against discrete water samples collected at 50 m and 65 m twice per week from 

January to March at Palmer LTER Station E (located just east of Outcast Island, Fig. 1). 

Water samples were filtered onto Whatman GF/F filters, extracted in 90% acetone, and 

analyzed using a Turner fluorometer. Calibrated chlorophyll a profiles were then 
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corrected for non-photochemical quenching using methods from Xing et al. (2012). For 

each profile, 50 m-averaged temperature, 50 m-averaged salinity, 50 m-averaged 

particulate beam attenuation coefficient (beam c), 50 m-integrated chlorophyll a, and the 

depth of the chlorophyll maximum were calculated.  

Since photosynthetically active radiation (PAR) measurements were not collected 

during surveys, 50 m-averaged beam c measurements were compared to the depth of 1% 

PAR measured biweekly at Station E from January to March. A negative linear 

correlation was found between the two (Pearson’s r = -0.78, p £ 0.001, n = 23), and 

therefore, 50 m-averaged beam c was used as a proxy for light attenuation in the surface 

water column. 

The seasonal MLD was calculated from vertical profiles of temperature and 

salinity according to Carvalho et al. (2017) and is based on the depth of the maximum 

buoyancy frequency (max(N2)). A quality index value (QI; Lorbacher et al. 2006) was 

calculated for each vertical profile and was used to filter out profiles without significant 

stratification (QI < 0.5). This approach was validated using a ship-based study along the 

West Antarctic Peninsula (Schofield et al. 2018).  

Wind speed (m s-1) measurements were obtained from an automated weather 

station located just behind Palmer Station. 12-hour averages of wind speeds were 

calculated for the duration of the study period using 2-minute data. 

 

5.3.6    Statistical analysis 

All statistical analyses were conducted in MathWorks MATLAB version R2019b. 

Data were grouped prior to statistical analysis to address specific spatial and temporal 
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questions. For spatial analysis, a single value for each krill variable (median swarm 

length, median swarm height, median swarm area, median swarm biomass, median 

swarm density, median krill depth, mean depth-integrated krill density, and number of 

krill swarms per km) was calculated for each of the five survey legs in the two penguin 

foraging regions (see Fig. 1) for all survey days. This approach allowed pairing of the 

CTD and acoustic data and created equal sample sizes for all variables. For temporal 

analysis, a single mean or median value for each krill variable (see above) and 

environmental variable (mean 50 m-averaged temperature, mean 50 m-averaged salinity, 

mean 50 m-integrated chlorophyll a, mean 50 m-averaged beam c, mean MLD, and mean 

max(N2)) was calculated for each survey day in the two penguin foraging regions. The 

same approach was used for the two inshore survey legs combined and the two offshore 

survey legs combined within each foraging region. For temporal and spatial analyses, the 

median krill depth was calculated using 1-m vertically binned krill densities averaged 

across each leg and survey. Only the ten weeks when both surveys were conducted were 

included in statistical analyses to allow for a paired sample design. 

Spatial differences between and within penguin foraging regions were analyzed 

with generalized linear mixed-effects models (GLMMs) fit by maximum likelihood 

(MATLAB function fitglme) using the single mean or median values for each survey leg. 

We chose GLMMs because many of the model response variables had non-normal data 

distributions that generalized models can accommodate, and because mixed models can 

account for the temporal dependence in our data caused by our repeated, paired sample 

design. Each environmental and krill variable was the response variable in three different 

models. The first model included penguin foraging region (Adélie or gentoo) as a 
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categorical, fixed effect to test for spatial differences between foraging regions. The other 

two models included survey leg (1-5) as a continuous, fixed effect to test for inshore to 

offshore differences across the Adélie and gentoo regions, respectively. Sampling week 

was included as a random effect in all models to account for the repeated, paired sample 

design. For all GLMMs, appropriate model error distributions and link functions were 

selected by visually inspecting histograms of response variables. 

Temporal trends for each penguin foraging region were analyzed with generalized 

linear models (GLMs; MATLAB function fitglm) using the single mean or median values 

for each survey day. Each environmental and krill variable was set as the response 

variable in six different models. A pair of models tested for temporal change in the full 

Adélie and gentoo foraging regions, respectively. A second pair of models tested for 

temporal change in the two inshore survey legs of the Adélie and gentoo foraging 

regions, respectively. A third pair of models tested for temporal change in the two 

offshore survey legs of the Adélie and gentoo foraging regions, respectively. All models 

included sampling date as a continuous, fixed variable. For all GLMs, appropriate model 

error distributions and link functions were selected by visually inspecting histograms of 

response variables.  

To determine relationships between environmental and krill variables, non-

parametric Kendall rank correlation tests (MATLAB function corr) were used due to the 

non-normal data distributions of most variables. Variables were paired by survey leg for 

correlations so that the sample size of krill variables matched the sample size of 

environmental variables derived from CTD profiles.  
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5.4     Results 

5.4.1    Krill population characteristics 

During our study, three modes of krill lengths were detected in the Palmer Deep 

canyon region. Juvenile krill (modes 1 and 2) accounted for 41% of total measured 

animals (Fig. 2A). From January to February, mode 1 shifted from 13.2 to 15.2 mm, 

while mode 2, centered at 21.1 mm in January, mostly disappeared from the region by 

early February (Fig. 2B, C). Adult krill (mode 3) accounted for 59% of total measured 

animals and shifted from 35.3 to 44.0 mm from January to February (Fig. 2A-C). 

 

5.4.2    Spatial variability 

Significant differences between the adjacent penguin foraging regions were found 

from January to March. The Adélie region was significantly fresher with higher max(N2) 

magnitudes, higher integrated chlorophyll a concentrations, and shallower MLDs than the 

gentoo foraging region (GLMM p £ 0.03; Fig. 3A-D and Table 1). The Adélie region was 

also marginally warmer with higher beam c values (i.e., increased light attenuation) than 

the gentoo foraging region (GLMM p = 0.13 and p = 0.08, respectively; Fig. 3E, F and 

Table 1). Temperatures < 0.5 °C, salinities < 33.6, and max(N2) values > 1.0 ´ 10-3 were 

all present in the Adélie region but absent in the gentoo region, indicating a greater 

influence of surface meltwater in the Adélie region (Fig. 3A, B, E).  

Krill swarms in the gentoo foraging region were longer, thicker, larger, denser, 

and contained higher biomass than swarms in the Adélie region (GLMM p £ 0.002; Fig. 

4A-E and Table 1). Additionally, fewer krill swarms were encountered when the 

chlorophyll a concentration was low (Kendall p = 0.01, τ = 0.18, n = 94), and these 
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swarms were longer and larger (Kendall p £ 0.001 and 0.002, τ = -0.28 and -0.21, n = 94 

and 94, respectively). Despite differences in krill swarm structure, there were no 

significant differences in the median krill depth, depth-integrated krill density, or the 

number of krill swarms per km between foraging regions (GLMM p ³ 0.27; Fig. 4F-H 

and Table 1). Although the difference in median krill depth was not statistically 

significant, the median value in the Adélie region was 28 m shallower than in the gentoo 

region (55 m versus 83 m; Fig. 4F), which is similar to the 24.4 m difference in mean 

penguin foraging dive depths between the two regions (17.1 m for Adélie penguins and 

41.5 m for gentoo penguins; Pickett et al. 2018). 

There was less variability within each foraging region than between them. There 

were no significant differences across survey legs for environmental variables in either 

region (GLMM p ³ 0.15; Supplementary Table 1), or for krill variables in the gentoo 

foraging region (GLMM p ³ 0.14; Table 2). However, in the Adélie region, depth-

integrated krill density was highest inshore where there were more krill swarms per km 

(GLMM p £ 0.003; Fig. 5A, B and Table 2). This heightened inshore density existed 

despite individual swarms being less dense and containing less biomass on the inshore 

survey legs (GLMM p £ 0.004; Fig. 5C, D and Table 2). Krill distribution was also 

deepest inshore in the Adélie region (GLMM p = 0.01; Fig. 5E and Table 2). 

 

5.4.3    Spatiotemporal variability in krill density 

The temporal trends of environmental and krill variables inshore versus offshore 

were mostly similar. For example, median krill depth deepens over time both inshore and 

offshore in both regions (GLM p £ 0.005; Supplementary Tables 2 and 3). However, the 
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temporal trends in depth-integrated krill density showed different patterns inshore versus 

offshore. In the first half of our paired sampling period (January 13 to February 16), 

depth-integrated krill density was highest in the gentoo region, and biomass was 

concentrated in the offshore survey legs near the Wauwerman Islands (Fig. 6A). In the 

second half of our study period (February 17 to March 23), krill density was highest at 

the inshore survey legs in both regions (Fig. 6B). Although krill density was variable 

week to week, increasing trends in krill density for the inshore survey legs and decreasing 

trends for the offshore survey legs in both foraging regions suggest an inshore re-

distribution of krill biomass from January to March (Fig. 6C, D). 

 

5.4.4    Seasonal patterns 

Despite significant environmental differences between the two foraging regions, 

seasonal patterns were similar (Fig. 7A, B, D, E). Surface freshwater pulses throughout 

the season stabilized the water column (increased max(N2); Kendall p = 0.01, τ = -0.24, n 

= 52) and spurred phytoplankton blooms (Kendall p = 0.008, τ = -0.19, n = 94). In 

January, relatively calm winds (mean 2.8 m s-1) and the presence of surface meltwater (0 

to 10 m) resulted in shallow MLDs (mean Adélie = 7.8 m; mean gentoo = 12.3 m) and 

high max(N2) values (mean Adélie = 0.001; mean gentoo = 6.9 ´ 10-4). On January 24, a 

peak in wind speed (12.8 m s-1) deepened respective MLDs to 48.3 m and 60.0 m in the 

Adélie and gentoo regions, concurrent with increases in integrated chlorophyll a from 

respective averages of 69.1 mg m-2 and 61.7 mg m-2 before the wind event to peaks of 

176.8 mg m-2 and 159.5 mg m-2 just after the wind event. MLDs deepened to 70.6 m and 

67.0 m in the Adélie and gentoo regions, respectively, in late February due to higher wind 
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speeds in the first half of February (mean 4.8 m s-1). In response, phytoplankton biomass 

decreased to an average of 70.4 mg m-2 and 41.7 mg m-2. Calmer winds in late February 

and early March (mean 2.5 m s-1) and a small surface meltwater layer reduced MLDs in 

mid-March (Adélie = 10.5 m; gentoo = 28.6 m), leading to a secondary small bloom 

(Adélie = 111.1 mg m-2; gentoo = 111.9 mg m-2). 

Krill biomass deepened significantly in both regions (GLM p £ 0.005; Fig. 7C, F 

and Supplementary Table 4), especially following the primary phytoplankton bloom. The 

median krill depth increased from an average of 21.4 m and 47.6 m in January to an 

average of 165.7 m and 149.5 m in March for the Adélie and gentoo regions, 

respectively. Deeper median krill depths were correlated with lower integrated 

chlorophyll a concentrations (Kendall p £ 0.001, τ = -0.26, n = 94) and lower beam c 

values (Kendall p £ 0.001, τ = -0.37, n = 94). In both regions, the median krill depth 

remained closer to the depth of the chlorophyll maximum through the primary bloom 

(Adélie = 8.4 m and gentoo = 28.5 m average depth differences) than post-bloom when 

the difference between the two became larger (Adélie = 84.4 m and gentoo = 73.5 m 

differences in February; Adélie = 152.6 m and gentoo = 137.7 m differences in March), 

indicating a decoupling of krill biomass from the chlorophyll maximum (Fig. 7B, C, E, 

F).  

The date of peak penguin chick fledging (February 13 for Adélie penguins and 

March 1 for gentoo penguins) coincides with the deepening of krill biomass in both 

regions (Fig. 7C, F). Percent krill biomass available within each species’ observed 

foraging depths (0-82 m for Adélie penguins and 0-144 m for gentoo penguins) decreased 
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from an average of 75.7% to 16.3% in the Adélie region and from 96.3% to 44.8% in the 

gentoo region from before to after peak fledging. 

 

5.5    Discussion 

The Adélie and gentoo penguin foraging regions are adjacent to each other in the 

Palmer area, with the colonies located roughly 10 km apart, yet the foraging regions have 

significantly different oceanographic properties and krill availability. These small-scale 

differences are significant to central place foraging penguins that have limited foraging 

ranges and are responsible for the survival of their chicks at the nest. These fine-scale and 

dynamic features are important in understanding differences in the foraging ecology 

between the local penguin populations as this polar ecosystem continues to change.  

 

5.5.1    Krill population characteristics 

Juvenile krill accounted for 41% of total measured animals, indicating a 

moderately successful recruitment year (Fig. 2; Ross et al. 2014). The prevalence of small 

(10-20 mm) krill during our study is unusual. Larval E. superba spawned the same 

summer would most likely be in the calyptopis stages (< 5 mm) during January/February, 

with relatively few having reached furcilia stages (roughly 5-15 mm; Gibbons et al. 

1999). Thus, the 10-20 mm mode is either very large age-class 0 krill or small age-class 1 

krill. The latter is more likely, and two separate length modes for age-class 1 krill are 

sometimes reported during summer along the West Antarctic Peninsula (Ross et al. 

2014). 
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5.5.2    Spatial variability 

The Adélie region was fresher, had greater integrated chlorophyll a and max(N2) 

values, a shallower MLD, and a greater influence of coastal meltwater (Fig. 3 and Table 

1). The Adélie region receives greater inputs of coastal meltwater and has slower 

currents, resulting in a stable water column conducive to phytoplankton growth (Carvalho 

et al. 2016; Kohut et al. 2018). Conversely, the gentoo region receives offshore intrusions 

of Upper Circumpolar Deep Water and has faster currents, which flush coastal meltwater 

and phytoplankton out of the region more quickly (Carvalho et al. 2016; Kohut et al. 

2018). 

There were no significant differences between depth-integrated krill density, the 

median krill depth, or the number of krill swarms per kilometer encountered in the two 

foraging regions, however, there were significant differences in krill swarming behavior 

(Fig. 4 and Table 1). These patterns are significant for foraging penguins that depend on 

food sources proximate to their colonies. Krill swarming behavior responds to the 

environmental conditions that krill are experiencing, mainly to aid in finding food (Folt 

and Burns 1999). In the gentoo region, lower integrated chlorophyll a concentrations 

correlated with longer and larger swarms. Previous studies in the Palmer region found 

krill swarms associated with low chlorophyll environments and attributed this pattern to 

grazing (Bernard et al. 2017) and to avoidance of high phytoplankton biomass areas that 

could be associated with higher predation risks (Cimino et al. 2016). Alternatively, 

assuming some level of organization between individuals within a swarm, a larger swarm 

area may increase the probability of encountering patches of food and increase foraging 

efficiency, and could be a strategy to locate food in low-chlorophyll environments 
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(Hamner and Hamner 2000; Tarling et al. 2009). Greater krill densities are also found in 

shallower water depths and along steep bathymetric slopes (Santora and Reiss 2011; Silk 

et al. 2016), thus, the shallow and complex bathymetry (pinnacles and seamounts) around 

the Wauwerman Islands may contribute to the higher-density swarms in the gentoo 

region.  

Although not statistically significant, the median krill depth was 28 m deeper in 

the gentoo region than the Adélie region, and was negatively correlated with chlorophyll 

a and beam c. Higher integrated chlorophyll a concentrations in the Adélie region 

increase light attenuation (reflected in higher beam c values) and may offer more 

protection from visual predators than in the gentoo region, allowing krill swarms to 

remain shallower. Additionally, krill may remain deeper in the gentoo region to avoid 

getting flushed from the region by strong surface currents (Kohut et al. 2018). 

Differences in krill depth distributions appear to drive differences in Adélie and gentoo 

foraging depths, with gentoo penguins at Biscoe Point foraging on average at deeper 

depths than Adélie penguins at Humble and Torgerson Islands (41.5 m and 17.1 m 

respectively; Pickett et al. 2018), roughly matching the 28 m difference in median krill 

depth between the regions.  

No significant environmental or krill differences were found across the five 

survey legs in the gentoo region, but in the Adélie region, there was higher depth-

integrated density, more krill swarms per km, and deeper krill biomass inshore compared 

to offshore (Fig. 5). Additionally, krill swarms inshore were less dense and contained less 

biomass despite the higher depth-integrated density inshore. Higher depth-integrated krill 

density inshore could be related to the shoaling bottom depths near Outcast Island, and 
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deeper inshore krill biomass could be a response to increased predation closer to the 

Adélie penguin colonies (Klevjer et al. 2010). However, numerous low-biomass and low-

density swarms inshore contradicts the expectation of larger and denser swarms in the 

presence of visual predators (Fielding et al. 2012), such as the Adélie penguins making 

foraging trips from Humble and Torgerson Islands.   

 

5.5.3    Spatiotemporal variability in krill density 

Krill biomass dynamics operate on large spatial and temporal scales linked to 

their life history, with interannual variability driven by recruitment success (Reiss et al. 

2008; Saba et al. 2014) and seasonal variability driven by horizontal migration (Siegel 

1988; Nicol 2006). In summer, the adult krill population is concentrated near the shelf 

break, and juvenile krill are most abundant in coastal waters (Siegel et al. 2013; Conroy 

et al. 2020). In early autumn, adult krill begin moving inshore to troughs or canyons 

where they can utilize deep food resources during the winter (Cleary et al. 2016; Reiss et 

al. 2017), while juvenile and larval krill may remain shallow to access under-ice algae 

(Bernard et al. 2018; Walsh et al. 2020). Over our study period, krill density increased 

inshore in the Adélie and gentoo regions (Fig. 6), independent of changes in 

environmental parameters. Although there is variability in weekly krill distribution due to 

behavioral responses to ocean physics, food availability, and predation, the increased 

density inshore (especially in the Adélie region) could be linked to the inshore migration 

of adult krill in late summer. No net tows were available later than early February to 

confirm this hypothesis, but presumably we would have found a higher proportion of 

adult krill in those tows. The inshore increase in the gentoo region is more variable, 
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which might reflect greater surface current speeds that may flush krill out of the region 

via the Bismarck Strait (Kohut et al. 2018), or the tendency of krill to aggregate near the 

seamounts and walls that are present along the offshore survey legs near the Wauwerman 

Islands.  

The prevalence of juvenile krill during our study likely benefitted both penguin 

species. Juvenile krill remain close to shore in summer (Siegel et al. 2013; Conroy et al. 

2020), causing mean depth-integrated krill density in our study to stay high throughout 

the summer (minimums of 111.9 g WW m-2 and 72.7 g WW m-2 for the Adélie and 

gentoo regions, respectively), which could lead to shorter foraging trips, chicks fed at 

more frequent intervals, increased chick fledging masses, and increased survival rates 

(Fraser and Hofmann 2003; Cimino et al. 2014). During failed recruitment years, the lack 

of juvenile krill inshore during summer may increase the importance of the cross-shelf 

adult krill migration for coastal penguin colonies and may lead to greater seasonal 

variability in krill biomass.  

Using 12 years of Palmer LTER data (1995-2006), Sailley et al. (2013) found that 

penguin colonies at Palmer Station did not appear to be limited by local krill biomass. 

This agrees with the results of our study. In austral summer 2018-2019, there were 1586 

Adélie penguin breeding pairs (3172 potentially foraging adults) and 3655 gentoo 

penguin breeding pairs (7310 potentially foraging adults; W. R. Fraser unpubl.). Along 

the West Antarctic Peninsula, past studies show average krill consumption values per 

foraging trip of 348.6 g (n = 48; Volkman et al. 1980) and 510.7 g (n = 12; Trivelpiece et 

al. 1987) for Adélie penguins and 365.0 g (n = 46; Volkman et al. 1980), 433.4 g (n = 14; 

Trivelpiece et al. 1987), 671.1 g (Admiralty Bay, n = 120; Miller et al. 2010), and 422.0 g 
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(Cape Shirreff, n = 130; Miller et al. 2010) for gentoo penguins. Using the maximum 

average consumption estimates for each species and assuming one foraging trip a day per 

penguin, 3172 Adélie penguins and 7310 gentoo penguins would consume 1.6 and 4.9 

tons of krill per day, respectively. Total krill biomass encountered on a given survey day 

(only considering our 20 nautical mile survey line) ranged from 27.2 to 1075.4 tons WW 

in the Adélie region and from 18.9 to 1266.6 tons WW in the gentoo region, indicating no 

shortage of krill for penguins within each foraging region, and plenty of prey left over for 

other krill predators foraging in the region such as whales, seals, fishes, and flying 

seabirds. In addition, Palmer region penguins forage relatively close to colonies (~8-25 

km) compared to penguins in other locations where foraging trips can reach 100 km 

(Williams 1995), and both species are capable of much deeper dives than are seen in the 

Palmer region (Bost et al. 1994; Watanuki et al. 1997), further supporting that penguins 

do not appear to be limited by krill in this area. 

 

5.5.4    Seasonal patterns 

The seasonal dynamics of phytoplankton in both foraging regions match those 

observed over six austral summer seasons (2010 to 2015), with phytoplankton blooms 

coupled to surface meltwater dynamics (Fig. 7A, B, D, E; Carvalho et al. 2016). In late 

austral spring, day length is increasing, and solar warming and sea ice melt stratify the 

upper water column allowing phytoplankton to remain in surface waters with ample 

access to sunlight (Vernet et al. 2008). These conditions spur a large phytoplankton 

bloom in January (Carvalho et al. 2016). Following the primary bloom, decreases in 

meltwater inputs combined with increased wind mixing cause MLDs to deepen, mixing 
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phytoplankton deeper in the water column out of the range of sunlight needed for growth 

(Mitchell and Holm-Hansen 1991) and leading to a decline in chlorophyll concentrations. 

A secondary bloom in late February/early March is associated with increased freshwater 

input and increased water column stability, likely initiated by continued seasonal 

warming and glacial meltwater runoff into coastal waters (Moline and Prézelin 1996; 

Carvalho et al. 2016).  

Similar to other Antarctic studies (Taki et al. 2005; Fielding et al. 2012), daytime 

krill biomass shifted deeper in the water column from January to March (Fig. 7C, F). This 

pattern suggests an increase in the magnitude of diel vertical migration (DVM), a 

behavior cued by light that balances feeding with the avoidance of visual predators (Hays 

2003). During the midsummer period of near continual daylight, E. superba remains in 

surface waters to feed throughout the diel cycle and exhibits shallow or inconsistent 

DVM (Tarling et al. 2018). The first half of our study period is characterized by long day 

length (21:17 to 16:05 hours), with high integrated chlorophyll a concentrations that 

increase light attenuation in surface waters (as evidenced by larger beam c values). 

Although day length is long, darker daytime surface waters may offer some protection 

from visual predators, allowing krill to remain shallow near the depth of the chlorophyll 

maximum. The proximity of the median krill depth to the chlorophyll maximum in both 

regions through the primary bloom in late January/early February suggests krill are 

feeding during the daytime.  

Krill DVM is typically more pronounced during spring and autumn when 

photoperiod is shorter (Ross et al. 1996; Taki et al. 2005). During the second half of our 

study, day length was shorter (15:58 to 11:03 hours) and integrated chlorophyll a 
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concentrations decreased, which reduced light attenuation in surface waters (as evidenced 

by decreased beam c values). Brighter daytime surface waters may make krill more 

susceptible to visual predators, and reduced day length increases the opportunity for 

protected nighttime feeding. The increased distance between median krill depth and the 

depth of the chlorophyll maximum in both regions after the primary bloom suggests the 

prioritization of daytime predator avoidance over feeding.  

Adélie penguin breeding phenology is typically 2 to 3 weeks earlier than that of 

gentoo penguins, with peak fledging occurring in mid-February for Adélie penguins and 

in early March for gentoo penguins (Pickett et al. 2018). Obtaining high krill yields 

during periods of peak chick growth is critical for chick survival, and interestingly, the 

date of peak fledging for each species coincided with the deepening of krill biomass in 

their respective foraging regions (Fig. 7C, F). Adélie penguins are migratory and usually 

depart the Palmer area after fledging, while gentoo penguins are non-migratory and 

require food in this region beyond March. There are no foraging data post-fledging, but 

gentoo penguins likely increase foraging dive depths in March to match the depth of the 

prey field.  

 

5.5.5    Conclusions  

 Ongoing environmental change along the West Antarctic Peninsula is expected to 

impact krill recruitment and penguin foraging dynamics in the Palmer Station area. Water 

column stratification and phytoplankton concentration do not appear to impact the krill 

biomass present on a given day in the Palmer area, however, bottom-up processes drive 

krill recruitment success or failure over interannual scales (Saba et al. 2014). Long-term 
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warming, sea ice declines, and increasing wind speeds cause MLDs to deepen and 

phytoplankton concentrations to decline and shift to smaller cells (Montes-Hugo et al. 

2009), which could lead to sustained poor krill recruitment over longer time scales. 

Decreased krill recruitment could lead to greater seasonal fluctuations in krill abundance 

near penguin colonies. Warmer waters and less sea ice habitat could also detrimentally 

impact krill growth and lipid accumulation (Ruck et al. 2014; Klein et al. 2018). Less 

consistent krill availability and reduced prey quality may result in increased penguin 

foraging efforts (e.g., longer foraging trip durations, deeper dives). The transition from 

Adélie to gentoo penguins in the region might shift the demand for krill later in the 

summer based on differences in breeding phenology and increase the need for seasonally 

sustained krill to accommodate a non-migratory local population. However, gentoo 

penguins have a more diverse diet than Adélie penguins, and alternate prey options could 

potentially support their needs when local krill availability is low (Pickett et al. 2018). 

This study highlights large temporal and spatial variability in krill distributions 

over the scales relevant to foraging penguins in the Palmer Station vicinity (e.g., 

differences in krill swarming behavior within regions only 10 km apart). This emphasizes 

the importance of high-resolution data sets in studying predator foraging ecology. 

Continued full-ecosystem research incorporating organismal life-history strategies is 

imperative for understanding the underlying factors that structure coastal biological 

hotspots and how further environmental change will impact them.  
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5.7    Tables 

 
Table 1. Results from GLMMs assessing the differences in variables between Adélie and 

gentoo penguin foraging regions. Models for 50m-averaged temperature and 50m-

averaged salinity used a normal distribution and identity link function while all other 

models used a gamma distribution and log link function. Significant results are indicated 

in bold. Weather occasionally prevented profiling at some CTD stations, and some MLD 

profiles failed to meet the QI threshold, resulting in n < 50 for those CTD-derived 

variables.  

 
Variable Adélie n Gentoo n Coeff SE t p 

50m-avg temperature (°C) 45 49 -0.08 0.05 -1.51 0.13 
50m-avg salinity (PSU) 45 49 0.10 0.02 6.78 < 0.001 

50m-int chlorophyll a (mg m-2) 45 49 -0.18 0.08 -2.19 0.03 

50m-avg beam c (m-1) 45 49 -0.08 0.05 -1.78 0.08 

MLD (m) 28 24 0.34 0.15 2.29 0.03 
Max(N2) 28 24 -0.43 0.12 -3.65 < 0.001 

Krill swarm length (m) 50 50 0.39 0.09 4.53 < 0.001 

Krill swarm height (m) 50 50 0.38 0.12 3.21 0.002 

Krill swarm area (m2) 50 50 0.85 0.17 4.85 < 0.001 

Krill swarm biomass (g WW) 50 50 4.12 0.43 9.57 < 0.001 

Krill swarm density (g WW m-2) 50 50 1.35 0.34 3.97 < 0.001 

Median krill depth (m) 50 50 0.11 0.14 0.84 0.41 

Depth-int krill density (g WW m-2) 50 50 0.28 0.28 0.98 0.33 

Number of krill swarms per km 50 50 -0.16 0.14 -1.12 0.27 
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Table 2. Results from GLMMs assessing the differences in krill variables across survey 

legs within each penguin foraging region (Adélie and gentoo). All models used a gamma 

distribution and log link function. Significant results are indicated in bold. n = 10 for all 

legs in each region.  

 
 Adélie Region Gentoo Region 

Variable Coeff SE t p Coeff SE t p 

Krill swarm length (m) 0.04 0.03 1.38 0.18 0.008 0.04 0.17 0.86 

Krill swarm height (m) -0.05 0.04 -1.49 0.14 -0.10 0.06 -1.47 0.15 

Krill swarm area (m2) -0.06 0.05 -1.08 0.29 -0.15 0.10 -1.51 0.14 

Krill swarm biomass (g WW) -0.48 0.14 -3.49 0.001 -0.23 0.27 -0.83 0.41 

Krill swarm density (g WW m-2) -0.28 0.09 -3.06 0.004 -0.20 0.20 -1.01 0.32 

Median krill depth (m) 0.15 0.06 2.61 0.01 -0.07 0.05 -1.44 0.16 

Depth-int krill density (g WW m-2) 0.37 0.12 3.12 0.003 -0.02 0.15 -0.13 0.90 

Number of krill swarms per km 0.14 0.04 3.45 0.001 0.10 0.08 1.31 0.20 
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5.8    Figures 

 
 
Figure 1. Map of the region south of Anvers Island along the West Antarctic Peninsula 

(inset) showing penguin foraging 2D kernel density estimates (KDE) based on foraging 

dives from satellite tag data from 2009 to 2019 (blue = Adélie foraging region, red = 

gentoo foraging region). The outer extent of the colored area is the 90% KDE, the thick 

line is the 80% KDE, and the thin line is the 50% KDE. Overlaid are the locations of the 

acoustic surveys, CTD profiling stations, and net tows. The blue triangle represents 

Adélie penguin colonies on Humble/Torgerson Islands, the red triangle represents the 

gentoo penguin colony on Biscoe Point, and the yellow triangle represents Palmer 

Station. Survey leg numbers are labeled 1-5 in black for each foraging region. 
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Figure 2. Euphausia superba length frequency distributions in the nearshore Palmer 

Deep canyon for (A) January and February combined (11 net tows, 739 krill measured), 

(B) January 6 to 8, 2019 (5 net tows, 453 krill measured), and for (C) February 3 to 5, 

2019 (6 net tows, 286 krill measured). Black lines indicate the best component fits for 

each krill mode based on gaussian mixture models.  
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Figure 3. Differences in (A) 50 m-averaged salinity, (B) max(N2), (C) 50 m-integrated 

chlorophyll a, (D) MLD, (E) 50 m-averaged temperature, and (F) 50 m-averaged beam c 

between the Adélie and gentoo survey regions. In each box plot, the horizontal line 

represents the median value, the top and bottom box limits represent the 25th and 75th 

percentiles, whiskers represent the full range of non-outlier observations, and x’s 

represent outliers. The colored points are the mean values for each paired sampling day. 

Black lines indicate GLMM fits and asterisks indicate GLMM significance levels in 

Table 1 (* 0.01 < p £ 0.05, *** p £ 0.001, absence of asterisks indicates p > 0.05). See 

Table 1 for n values.   
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Figure 4. Differences in (A) krill swarm length, (B) krill swarm height, (C) krill swarm 

area, (D) krill swarm density, (E) krill swarm biomass, (F) median krill depth, (G) depth-

integrated krill density, and (H) the number of krill swarms per km between the Adélie 

and gentoo survey regions. In each box plot, the horizontal line represents the median 

value, the top and bottom box limits represent the 25th and 75th percentiles, whiskers 

represent the full range of non-outlier observations, and x’s represent outliers. The 

colored points are the mean values for each paired sampling day. Black lines indicate 

GLMM fits and asterisks indicate GLMM significance levels in Table 1 (** p £ 0.01, *** 

p £ 0.001, absence of asterisks indicates p > 0.05). See Table 1 for n values. 
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Figure 5. Differences in (A) depth-integrated krill density, (B) the number of krill 

swarms per km, (C) krill swarm density, (D) krill swarm biomass, and (E) median krill 

depth across the five survey legs of the Adélie survey, with survey leg 1 located offshore 

and leg 5 located inshore. In each box plot, the horizontal line represents the median 

value, the top and bottom box limits represent the 25th and 75th percentiles, and whiskers 

represent the full range of non-outlier observations. The colored points are the values for 

each paired sampling day. Black lines indicate GLMM fits and asterisks indicate GLMM 

significance levels in Table 2 (** p £ 0.01, *** p £ 0.001, absence of asterisks indicates p 

> 0.05). n = 10 for all. 
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Figure 6. Seasonal spatiotemporal trends in krill biomass. Maps of mean depth-

integrated krill density with the size of the circle scaled to density for roughly one month 

periods during the early and late austral summer: (A) January 13 to February 16, 2019 (n 

= 5 surveys) and (B) February 17 to March 23, 2019 (n = 5 surveys). The blue triangle 

represents Adélie penguin colonies on Humble/Torgerson Islands, the red triangle 

represents the gentoo penguin colony on Biscoe Point, and the yellow triangle represents 

Palmer Station. Time series of mean depth-integrated krill density for the inshore two 

survey legs (purple dots) compared to the offshore two survey legs (black dots) for the 

(C) Adélie and (D) gentoo penguin foraging regions. Solid lines indicate GLM fits (see 

Supplementary Tables 2 and 3) with model p-values indicated in subplot legends. 
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Figure 7. Time series of physical and biological properties in the (A-C) Adélie and (D-F) 

gentoo penguin foraging regions from November 2018 to March 2019. (A and D) 

Interpolated vertical cross-sections of daily averaged salinity overlaid with MLD (dashed 

line) and 12-hour averaged wind speed (gray line). (B and E) Interpolated vertical cross-

sections of daily averaged chlorophyll a overlaid with MLD (dashed line). (C and F) 

Interpolated vertical cross-sections of daily averaged krill density overlaid with MLD 

(dashed line). Horizontal dashed lines indicate the maximum dive depth for Adélie and 

gentoo penguins (82 m and 144 m, respectively) based on five summers of data from 

Pickett et al. (2018). Vertical solid lines indicate peak penguin chick fledging dates (day 

when the most chicks fledged) in 2019 for each species (February 13 for Adélie penguins 

and March 1 for gentoo penguins; methods in Chapman et al. 2010).  
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5.9    Supporting Information 
 
Table S1. Results from GLMMs assessing the differences in environmental variables 

across survey legs within each penguin foraging region (Adélie and gentoo). Models for 

50 m averaged temperature and 50 m averaged salinity used a normal distribution and 

identity link function while all other models used gamma distribution and log link 

function. For 50 m averaged temperature, 50 m averaged salinity, 50 m integrated 

chlorophyll a, and 50 m averaged beam c,  n = 9, 8, 9, 9, 10 for legs 1-5 respectively in 

the Adélie region and n = 9, 10, 10, 10, 10 for legs 1-5 respectively in the gentoo region. 

For MLD and max(N2), n = 5, 5, 5, 6, 7 for legs 1-5 respectively in the Adélie region and 

n = 4, 5, 5, 8, 2  for legs 1-5 respectively in the gentoo region. Weather occasionally 

prevented profiling at some CTD stations, and some MLD profiles failed to meet the QI 

threshold, resulting in n < 10 for those CTD-derived variables. 

 
 Adélie Region Gentoo Region 

Variable Coeff SE t p Coeff SE t p 
50 m avg temperature 

(°C) 0.02 0.02 0.86 0.39 0.007 0.01 0.53 0.60 

50 m avg salinity (PSU) 0.005 0.005 0.95 0.35 0.007 0.006 1.23 0.23 
50 m int chlorophyll a 

(mg m-2) -0.02 0.02 -0.77 0.45 -0.05 0.03 -1.47 0.15 

50 m avg beam c (m-1) -0.006 0.01 -0.43 0.67 -0.0003 0.02 -0.02 0.99 
MLD (m) 0.0004 0.04 0.01 0.99 0.03 0.09 0.30 0.76 
Max(N2) 0.04 0.06 0.63 0.53 0.04 0.05 0.70 0.49 
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Table S2. Results from GLMs assessing temporal change of variables on the inshore two survey legs combined and the offshore two 

survey legs combined within the Adélie penguin foraging region. Models for 50 m averaged temperature and 50 m averaged salinity 

used a normal distribution and identity link function while all other models used gamma distribution and log link function. Significant 

results are indicated in bold. Weather occasionally prevented profiling at some CTD stations, and some MLD profiles failed to meet 

the QI threshold, resulting in n < 10 for those CTD-derived variables. 

 Inshore Survey Legs Offshore Survey Legs 

Variable n Coeff SE t p n Coeff SE t p 

50 m avg temperature (°C) 10 0.01 0.006 1.74 0.12 9 0.02 0.008 2.43 0.05 

50 m avg salinity (PSU) 10 0.002 0.001 1.44 0.19 9 -0.0008 0.002 -0.40 0.70 

50 m int chlorophyll a (mg m-2) 10 -0.009 0.007 -1.31 0.23 9 0.002 0.009 0.20 0.85 

50 m avg beam c (m-1) 10 -0.01 0.005 -2.89 0.02 9 -0.006 0.006 -0.99 0.35 
MLD (m) 8 0.02 0.02 1.35 0.23 6 -0.04 0.02 -1.70 0.16 
Max(N2) 8 -0.02 0.009 -1.84 0.12 6 0.001 0.01 0.13 0.90 

Krill swarm length (m) 10 -0.002 0.006 -0.41 0.70 10 -0.006 0.007 -0.78 0.46 

Krill swarm height (m) 10 0.0009 0.008 0.12 0.91 10 -0.006 0.008 -0.80 0.45 

Krill swarm area (m2) 10 -0.004 0.01 -0.38 0.71 10 -0.02 0.01 -1.23 0.26 

Krill swarm biomass (g WW) 10 -0.01 0.03 -0.38 0.72 10 -0.07 0.04 -1.58 0.15 

Krill swarm density (g WW m-2) 10 -0.005 0.02 -0.21 0.84 10 -0.03 0.03 -1.19 0.27 

Median krill depth (m) 10 0.03 0.008 4.12 0.003 10 0.04 0.01 4.18 0.003 

Depth-int krill density (g WW m-2) 10 0.03 0.01 2.61 0.03 10 -0.006 0.03 -0.20 0.85 

Number of krill swarms per km 10 -0.009 0.008 -1.03 0.33 10 0.0007 0.01 0.07 0.95 
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Table S3. Results from GLMs assessing temporal change of variables on the inshore two survey legs combined and the offshore two 

survey legs combined within the gentoo penguin foraging region. Models for 50 m averaged temperature and 50 m averaged salinity 

used a normal distribution and identity link function while all other models used gamma distribution and log link function. Significant 

results are indicated in bold. Weather occasionally prevented profiling at some CTD stations, and some MLD profiles failed to meet 

the QI threshold, resulting in n < 10 for those CTD-derived variables. 

 Inshore Survey Legs Offshore Survey Legs 

Variable n Coeff SE t p n Coeff SE t p 

50 m avg temperature (°C) 10 0.007 0.003 2.52 0.04 10 0.007 0.003 2.08 0.07 

50 m avg salinity (PSU) 10 -0.003 0.002 -2.07 0.07 10 -0.0005 0.001 -0.46 0.66 

50 m int chlorophyll a (mg m-2) 10 -0.005 0.009 -0.59 0.57 10 -0.02 0.007 -2.18 0.06 

50 m avg beam c (m-1) 10 -0.009 0.005 -1.79 0.11 10 -0.02 0.004 -3.80 0.005 
MLD (m) 10 0.01 0.01 1.19 0.27 7 -0.003 0.01 -0.19 0.86 
Max(N2) 10 0.002 0.01 0.17 0.87 7 0.004 0.007 0.61 0.57 

Krill swarm length (m) 10 0.008 0.009 0.95 0.37 10 0.001 0.005 0.26 0.80 

Krill swarm height (m) 10 -0.005 0.01 -0.38 0.71 10 0.01 0.01 0.94 0.37 

Krill swarm area (m2) 10 -0.02 0.04 -0.41 0.69 10 0.01 0.01 0.98 0.36 

Krill swarm biomass (g WW) 10 -0.12 0.05 -2.61 0.03 10 -0.009 0.04 -0.23 0.83 

Krill swarm density (g WW m-2) 10 -0.05 0.03 -1.54 0.16 10 -0.02 0.03 -0.71 0.50 

Median krill depth (m) 10 0.03 0.008 4.03 0.004 10 0.03 0.008 3.81 0.005 

Depth-int krill density (g WW m-2) 10 0.03 0.02 1.47 0.18 10 -0.05 0.01 -3.16 0.01 

Number of krill swarms per km 10 0.0008 0.01 0.08 0.94 10 -0.02 0.01 -1.42 0.19 
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Table S4. Results from GLMs assessing temporal change of variables within each penguin foraging region (Adélie and gentoo). 

Models for 50 m averaged temperature and 50 m averaged salinity used a normal distribution and identity link function while all other 

models used gamma distribution and log link function. Significant results are indicated in bold. 

 
 Adélie Region Gentoo Region 

Variable n Coeff SE t p n Coeff SE t p 

50 m avg temperature (°C) 10 0.01 0.006 2.34 0.05 10 0.006 0.003 2.45 0.04 

50 m avg salinity (PSU) 10 0.001 0.002 0.75 0.48 10 -0.002 0.001 -1.50 0.17 

50 m int chlorophyll a (mg m-2) 10 -0.006 0.008 -0.77 0.46 10 -0.01 0.008 -1.43 0.19 

50 m avg beam c (m-1) 10 -0.01 0.005 -2.22 0.06 10 -0.01 0.004 -3.02 0.02 
MLD (m) 10 -0.002 0.01 -0.16 0.88 10 0.006 0.008 0.73 0.49 
Max(N2) 10 -0.01 0.007 -1.95 0.09 10 0.003 0.008 0.39 0.71 

Krill swarm length (m) 10 -0.004 0.005 -0.77 0.46 10 0.005 0.006 0.84 0.42 

Krill swarm height (m) 10 -0.0004 0.004 -0.10 0.92 10 -0.005 0.01 -0.42 0.68 

Krill swarm area (m2) 10 -0.006 0.006 -0.94 0.37 10 -0.002 0.02 -0.09 0.93 

Krill swarm biomass (g WW) 10 -0.01 0.01 -0.98 0.36 10 -0.09 0.05 -1.87 0.10 

Krill swarm density (g WW m-2) 10 -0.02 0.02 -1.01 0.34 10 -0.04 0.03 -1.34 0.22 

Median krill depth (m) 10 0.04 0.008 4.72 0.002 10 0.03 0.008 3.81 0.005 

Depth-int krill density (g WW m-2) 10 0.02 0.008 2.39 0.04 10 -0.006 0.01 -0.43 0.68 

Number of krill swarms per km 10 -0.004 0.008 -0.50 0.63 10 -0.007 0.009 -0.77 0.46 
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6. Summary and Conclusions 
 
 

The Antarctic coastal ocean is a dynamic environment with large seasonal 

fluctuations in solar radiation, sea ice coverage, meltwater inputs, and wind-driven 

vertical mixing. Organisms have developed specialized responses to these seasonal 

cycles, using environmental cues to regulate timing, behavior, and physiology to optimize 

growth and reproductive success. The result is an immensely productive ecosystem 

fueled by large phytoplankton blooms that sustain abundant populations of krill, in turn 

feeding the iconic penguins, whales, and seals that define this region (Ross et al. 1996). 

To truly understand the long-term climate impacts on WAP ecosystems, it is critical to 

consider physical changes and organismal responses for the entire phytoplankton growing 

season (austral spring to autumn), which was the primary goal of this dissertation.  

 Novel technology was invaluable in elucidating seasonal patterns near Palmer 

Station. Chapters 2 and 3 used an Imaging FlowCytobot to collect phytoplankton 

taxonomy and cell size information at species-level resolution to characterize seasonal 

succession patterns in response to environmental drivers. In Chapter 2, a convolutional 

neural network was developed to automatically sort WAP phytoplankton images, which 

presents future opportunities for characterizing phytoplankton community species and 

size diversity in near-real time (e.g., in the field). Using this technology, Chapter 3 

documented important seasonal events such as recurrent blooms of large-celled diatoms 

following sea ice retreat, mid-summer cryptophyte blooms, and a massive, small-celled 

pennate diatom bloom in early February 2019. In Chapter 4, 12-years of autonomous 

underwater glider deployments were paired with a photoacclimation model to create a 
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seasonal climatology of phytoplankton bloom phenology, capturing a recurrent phase 

shift between at the beginning of February in both physical and phytoplankton 

physiology variables. In Chapter 5, new rigid-hulled inflatable boats at Palmer Station 

allowed for seasonal acoustic surveys of krill within adjacent Adélie and gentoo penguin 

foraging regions, highlighting large local variability in oceanographic properties and krill 

availability, and the seasonal migration of adult krill inshore and to deeper depths.  

 An important theme of this dissertation was the role the physical environment 

plays in shaping lower trophic level dynamics. Light availability triggers the initiation of 

the growing season (Chapter 3), changes in phytoplankton photophysiology (Chapter 4), 

and the depth of krill diel vertical migration (Chapter 5). High winter sea ice extent and 

slow retreat from the Palmer region led to high summer phytoplankton biomass, and an 

increase in meteoric meltwater from late spring to autumn drove a shift towards smaller 

phytoplankton cells (Chapter 3). Increased wind-driven mixing in February brought 

sedimentary iron to surface waters, causing a large autumn phytoplankton bloom 

characterized by small, pennate diatoms (Chapter 3) with increased growth rates and high 

cellular chlorophyll concentrations (Chapter 4). Differing physical dynamics (e.g., 

current speeds, MLD) in regions less than 10 km apart led to significantly different krill 

swarming behaviors (Chapter 5). These relationships emphasize the importance of 

studying plankton ecology on seasonal scales to contextualize interannual and long-term 

trends. 

 Underlying our results are significant environmental changes along the WAP. We 

found that shorter duration sea ice seasons led to decreased phytoplankton biomass and 

lower proportions of diatoms, and that spring bloom initiation is tightly coupled to the 



 

 

152 

 

timing of sea ice retreat (Chapter 3). From 1979 to 2011, annual ice season duration 

decreased by 3.3 months, and sea ice retreat advanced by 1.3 months (Stammerjohn et al. 

2012). A continuation of these trends could exacerbate phytoplankton decreases and 

shifts to non-diatom species, and advance the spring bloom leading to predator-prey 

mismatches (Cushing 1990). Increased cloud cover and wind-driven mixing from 1978 to 

2006 reduced light levels in the surface mixed layer (Montes-Hugo et al. 2009), which 

should decrease phytoplankton growth rates; however, we saw an increase in February 

growth rates due to iron increases (Chapter 4). Therefore, continued increases in wind 

speeds could have a complicated response that highlights the importance of the balance 

between light and nutrient availability for phytoplankton growth, species composition, 

and size. From late spring to autumn, we also saw decreased phytoplankton cell size 

concurrent with increases in meltwater inputs (Chapters 3). Thus, continued warming and 

melting along the WAP could increase the prevalence of smaller cells (Montes-Hugo et 

al. 2009; Cook et al. 2016). 

 A reduction in phytoplankton biomass could lead to less successful krill 

recruitment (Saba et al. 2014), and therefore greater seasonal fluctuations of krill 

abundance near penguin colonies. Shifts to smaller phytoplankton cells could cause shifts 

to smaller zooplankton predators in response (e.g., from krill to microzooplankton), 

resulting in a microbial food web with reduced carbon cycling (Sailley et al. 2013). 

Additionally, increases in the frequency of salp blooms (Atkinson et al. 2004) could 

greatly increase grazing rates and decrease phytoplankton biomass further. Warmer 

waters and less sea ice are also expected to impact krill growth and lipid accumulation 

(Ruck et al. 2014; Klein et al. 2018). Less consistent prey availability, a changing 
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zooplankton community, and less nutritious krill would likely increase penguin foraging 

efforts and decrease breeding success (Fraser and Hofmann 2003; Chapman et al. 2011). 

For an already declining Adélie penguin population in the Palmer region, the results 

could be devastating.  

 Further research is needed to fully understand how significant these changes 

might be, as many open questions remain. Chapter 3 showed the tight link between sea 

ice retreat and the spring phytoplankton bloom, but it is unknown whether the advance in 

sea ice retreat since 1979 has driven advances in spring bloom timing, and how this might 

affect higher trophic levels. Chapter 4 showed important phase changes in summer 

phytoplankton physiology, however capturing the full annual bloom cycle and better 

quantifying loss terms (grazing and advection) would help clarify the drivers of bloom 

formation in coastal Antarctica. Additionally, more iron data concurrent with 

phytoplankton biomass and species composition data would help to confirm our 

hypothesis that the February pennate diatom bloom is driven by wind-driven iron 

resuspension (Chapters 3 and 4). Finally, Chapter 5 highlighted seasonal patterns in krill 

availability and the impact on foraging Adélie and gentoo penguins, but we do not know 

if the same patterns will hold in future years, and continued collection of this seasonal 

timeseries is crucial for contextualizing interannual variability in coastal krill abundance. 

Tackling these questions will give us a more complete understanding of how coastal 

ecosystems will respond and adapt to continued environmental changes along the WAP. 
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