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INTRODUCTION

Species distributions reflect the habitat selection
decisions individual animals make to maximize fit-
ness under constraints imposed by their perceptual
and movement capabilities. Variations in survival
and reproduction are the consequences of con-
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ABSTRACT: Ocean Observing Systems (OOS) now
provide comprehensive descriptions of the physical
forcing, circulation, primary productivity and water
column properties that subsidize and structure habi-
tats in the coastal ocean. We used generalized
additive models (GAM) to evaluate the power of OOS
remotely sensed ocean data along with in situ hydro-
graphic and bottom data to explain distributions of
4 species important in the Mid-Atlantic Bight, USA,
ecosystem that have different vertical habitat prefer-
ences. Our GAMs explained more abundance varia-
tion for pelagic species (longfin inshore squid and
butterfish) than demersal species (spiny dogfish and
summer flounder). Surface fronts and circulation pat-
terns measured with OOS remote sensing as well as
the rugosity and depth of the bottom were important
for all species. In situ measurements of water column
stability and structure were more useful for modeling
pelagic species. Regardless of vertical habitat prefer-
ence, the species were associated with vertical and
horizontal current flows, and/or surface fronts, indi-
cating that pelagic processes affecting movement
costs, prey production and aggregation influenced
distributions. Habitat-specific trends in abundance of
3 of the 4 species were well described by our  OOS-
informed GAMs based upon cross validation tests.
Our analyses demonstrate that OOS are operationally
useful for regional scale habitat modeling. Regional
scale OOS-informed statistical habitat models could
serve as bases for tactical ecosystem management
and for the development of more sophisticated spa-
tially explicit mechanistic models that couple onto-
genic habitats and life history processes to simulate
recruitment of organisms important to maintaining
the resilience of coastal ecosystems.
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Data and models integrated in Ocean Observing Systems
capture ocean dynamics at scales required for regional habi-
tat modeling and management. Image: Igor Heifetz

OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 438: 1–17, 2011

strained habitat selection and the mechanistic under-
pinnings of spatial population dynamics. The diver-
sity of habitats used by species, and effects of habitat
variation on vital rates, including movements, deter-
mine the productivity, stability and resilience of
regional populations (Secor et al. 2009, Tian et al.
2009, Kerr et al. 2010). Furthermore, the effects of
habitat diversity and its loss on the resilience and sta-
bility of populations that serve as ecosystem key-
stones should be translated across a level of eco -
logical organization to affect ecosystem productivity,
resilience, and stability. Understanding the ways
habitat effects on recruitment are translated into the
emergent dynamics of regional populations impor-
tant in maintaining the resilience of large marine
ecosystems is crucial for the development of effective
space-based ecosystem management, particularly in
the face of rapid climate change (Mora et al. 2007,
Hsieh et al. 2010). The development of statistical
habitat models that are broad in scope and explicitly
consider bottom features as well as the dynamic prop-
erties and processes of the water column (e.g. tem-
perature, primary productivity, advection) known to
regulate critical physiological, behavioral and demo-
graphic rates is a necessary first step toward this end.

Regional scale habitat models have been difficult
to develop for coastal species, in part because data
describing habitat variation at broad spatial but fine
time scales have been unavailable. Ocean Observing
Systems (OOS) now provide spatially and temporally
comprehensive regional scale descriptions of pelagic
features and processes required to understand the
ways in which dynamic features of the ocean fluid
affect the distribution and recruitment of fish living
in it. Ocean Observing data include sea surface tem-
perature and ocean color measured with satellite
sensors, surface currents measured with networks
of high-frequency (HF) radars deployed along the
shore, and physical and optical properties measured
by fleets of robots gliding beneath the ocean surface.
The data describe the physical forcing, current flows,
and sources and transport of detritus, primary and
secondary productivity which structure, couple and
fuel coastal ocean habitats and thus regulate the
recruitment of animals using them. Remotely sensed
data have been used to construct habitat models for
open ocean pelagic predators, but are not commonly
used for coastal species (Valavanis et al. 2008, Zai -
nuddin et al. 2008, Becker et al. 2010, Mugo et al.
2010, Zydelis et al. 2011).

Presently, Ocean Observing data with the broadest
spatial coverage are satellite measurements of ocean
temperature and color, and HF radar measurements

of surface currents. These data can be processed to
describe upwelling and downwelling centers and the
spatial dynamics of surface fronts where high pri-
mary productivity occurs or is concentrated. These
products may therefore be most useful for identifying
habitat associations of pelagic species. While surface
data collected directly overhead of trawl samples
may be less useful for describing habitats of demersal
animals, particularly in deep water, the vital rates of
demersal species are also regulated by surface pro-
cesses, although effects may be downstream and
delayed in time. Distributions of large demersal
 animals may be influenced to a greater degree by
pelagic processes regulating movement costs and
prey production, than by structural features of the
bottom that may provide smaller and younger stages
with predation refugia. Finally, surface features can
serve as proxies for important subsurface properties
and processes (Castelao et al. 2008).

We used generalized additive modeling to evaluate
the power of Ocean Observing data, as well as in situ
pelagic data and benthic data, to describe the distri-
butions of 4 trophically important interacting species
with different vertical habitat preferences in the
Mid-Atlantic Bight US coastal ocean. We quantified
the strength of species associations with mesoscale
pelagic features described by OOS, as well as pelagic
and benthic features measured with shipboard CTDs,
acoustics and bottom grabs, emphasizing habitat
characteristics likely to influence growth, dispersal,
survival or reproduction. Finally, we discuss the
potential value of current and future Ocean Ob -
serving assets and research for the development of
regional scale habitat models that could serve as fun-
damental tools for understanding the role of marine
habitat dynamics in ecosystem dynamics and the
development of more effective space- and time-
based ecosystem management strategies.

MATERIALS AND METHODS

Study area

Our study area was the Mid-Atlantic Bight (MAB),
USA, where the dynamics of the coastal ocean are
continuously monitored at broad spatial scales but
fine time scales by the Mid-Atlantic Regional Associa-
tion Coas tal Ocean Observing System (MARACOOS:
http:// maracoos.org; Fig. 1). The oceanography of the
MAB is described in detail elsewhere (Beardsley &
Boicourt 1981, Epifanio & Garvine 2001, Lentz 2008).
Briefly, the broad, gently sloping continental shelf in
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the MAB is incised by canyons and drowned river
valleys that serve as important cross shelf transport
path ways. Mean current flow is southwestward and
driven by cold buoyant water derived from the north-
east. Biological productivity is strongly seasonal.
However, air and ocean temperatures, stratification,
and wind and buoyancy forcing are extremely
 variable and superimpose complex, ecologically im-
portant variation on mean patterns. Mean southwest-
ward current flows can be intensified by southward,
downwelling favorable winds and estuarine dis-
charge, or steered offshore by northward, up welling
favorable winds  associated with approaching atmos-
pheric fronts and summer sea breezes. Wind forcing
results in sea surface set up and set down along the
coast that produces cross-shelf, subsurface counter
flows that are strongest along drowned river valleys.
During the summer, areas of high primary productiv-
ity occur in estuaries and nearshore up welling cen-
ters. During the spring, meanders in the shelf slope
front produce upwelling of deep nutrient-rich oceanic
waters that, with increasing solar radiation, promote
an early bloom in the shelf slope sea (Marra et al.
1990, Ryan et al. 1999). Spring blooms fueled by nu-
trients supplied by winter water column overturning
occur with the onset of stratification closer to shore,
while blooms also occur on the shelf when stratifica-

tion breaks down in the autumn. Organisms
occupying the MAB exhibit complex seasonal
cycles of reproduction and habitat use in
 response to the complex seasonal dynamics
of ocean climate, circulation and primary
 productivity.

Species abundance data

We selected longfin inshore squid Loligo
pealeii, butterfish Peprilus triacanthus, spiny
dogfish Squalus acanthias and summer flounder
Paralichthys dentatus for analysis because they
exhibit differences in vertical habitat prefer-
ence, are abundant in fishery-independent
bottom trawl surveys and are trophically im-
portant interacting species in the MAB (Link et
al. 2008). Butterfish and longfin squid are small
pelagic species important in the transfer of en-
ergy from lower trophic levels to apex preda-
tors (Link et al. 2008). Both species reach matu-
rity at a year or less of age and have very high
reproductive rates (Hatfield & Cadrin 2002,
Collette & Klein MacPhee 2002). Butterfish
feed primarily upon zooplankton. Squid feed

on small pelagic animals including butterfish.
Spiny dogfish and summer flounder feed upon

squid and butterfish but generally spend more time
deeper in the water column (Packer & Hoff 1999,
Moustahfid et al. 2010, Staudinger 2006, Stehlik 2007).
Spiny dogfish are not as surface oriented as squid
and butterfish but still spend considerable amounts
of time in the water column. They exert strong top
down effects on the MAB food web. Summer floun-
der are subtropical flatfish more strongly associated
with the seabed in the ocean and estuaries.

All 4 species migrate between lower latitude and/ or
offshore overwintering habitats to higher latitude, in-
shore habitats where they spend the summer. Longfin
inshore squid, butterfish and summer flounder are
abundant in the MAB throughout the year while spiny
dogfish are more abundant in cooler waters to the
northeast during the summer (Stehlik 2007).

We used collections of the 4 species made by
National Marine Fisheries Service, Northeast Fish-
eries Science Center’s (NMFS-NEFSC) autumn, win-
ter, and spring fisheries independent bottom trawl
survey (Fig. 1; www.nefsc.noaa. gov/ epd/ ocean/ Main
Page/ioos.html) in our statistical habitat modeling.
Azarovitz (1981) described the design of the stratified
random survey in detail. Winter surveys occurred in
February, spring surveys from March to early May,
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Fig. 1. Locations on the Mid-Atlantic Bight continental shelf, USA, of
stations sampled during North East Fisheries Science Center fishery-
independent bottom trawl surveys and considered in our analysis of
longfin inshore squid, butterfish, spiny dogfish and summer flounder 
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and autumn surveys in September and October. Sur-
vey tows were made with a #36 Yankee trawl with
a 10.4 m wide × 3.2 m high opening and rollers
(12.7 cm stretched mesh [SM] opening, 11.4 cm
SM cod end, 1.25 cm SM lining in the cod end and
upper belly). The net was towed over the bottom at
~3.5 knots for 30 min. Distances the net was towed on
the bottom averaged 3.5 km (95%  confidence limits
3.2 to 3.7 km). Tows were made throughout the 24 h
day. Consecutive samples were collected approxi-
mately every 2 h (50th, 5th, and 95th quantiles: 2.07,
1.38, 3.53 h respectively) and 19 km apart (50th,
5th, and 95th quantiles: 19.02, 4.80, 41.88 km re -
spectively) on each survey. Examination of available
length and age frequencies confirmed that large
age 1+ juveniles and adults dominated collections
because the trawl mesh was relatively coarse and
shallow coastal and estuarine nursery habitats were
not sampled.

We selected the analysis domain for this study
based upon the availability of remotely sensed data
from the OOS. Bottom trawl samples collected from
February 2003 through October 2007 between lati-
tudes 37.14° and 40.85° N and longitudes 70.83° and
75.16° W fit within the domain (Fig. 1). An average of
101 stations was sampled during spring and autumn.
An average of 70 stations was sampled during the
winter.

Habitat data

For bottom data, we computed topographic charac-
teristics of the bottom from the 3-arc-second NGDC
Coastal Relief Model (www.ngdc. noaa.gov/ mgg/
coastal/coastal.html; cell size = 93 m; Table 1). We
used circular moving window analysis in GRASS GIS
to calculate median and standard deviations of bot-
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Variables Spatial grain Possible ecological effect Data source

Sun’s elevation na Vertical migration/catchability Calculated for trawl locations & times
Geographic coordinates 2 km Unknown spatial process NEFSC bottom trawl survey

Benthic data
Depth (μ, SD) 1.95 km (93 m) Structural/spatial refuge NGDC 93 m grida

Slope (μ, SD)d ” ” ”
Aspect (SD)d ” ” ”
Profile curvature (μ, SD)d ” ” ”
Sediment grain size (μ) 2 km Structural/spatial refuge/enrichment US seabed data baseb

Pelagic data
In situ CTD measurements
Bottom temperature 1 m Metabolic rate NEFSC bottom trawl survey
Bottom salinityd ” Alias proximity to freshwater source ”
Mixed layer depth ” Mixing/1° productivity ”
Stratification indexd ” ” ”
Simpson’s PE (30 m) ” ” ”

OOS remote sensing
High−frequency radar
Cross shelf velocity 10 km Advection/movement cost/mixing MARACOOS HF radarc

Along shelf velocity ” ” ”
Variance in velocity ” Tidal mixing/episodic forcing ”
Divergence potential ” Upwelling/downwelling & mixing ”
Vorticity potentiald ” Eddy development/retention ”

Satellites
Sea surface temperature 10 km Metabolic rate/other seasonal factors MODIS through MARACOOSc

Chlorophyll a ” Primary production/organic matter ”

Normalized water leaving radiances
(412, 443, 488, 531, 551, 667 nm)d ” Surface organic matter ”

Water mass class ” Various ”
Frontal index (distance to & strength
of gradient between water masses) ” Concentration/enrichment ”

Prey abundance
Squid 2 km Prey NEFSC bottom trawl survey
Butterfish ” ” ”
awww.ngdc.noaa.gov/mgg/coastal/coastal.html; bhttp://walrus.wr.usgs.gov/usseabed; chttp://maracoos.org/data;
dvariables that were redundant or not ecologically meaningful and therefore excluded in the final analysis

Table 1. Data sources and potential ecological effects of environmental variables considered in generalized additive model (GAM)
habitat models for longfin inshore squid, butterfish, spiny dogfish and summer flounder. Squid and butterfish were considered 
prey in auxiliary models for spiny dogfish and summer flounder predators. na = not applicable, ”: same data as given in the line above
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tom depth, aspect, slope, and curvature from the
relief model (e.g. see Fig. 3; Neteler & Mitasova
2008). The window diameter was 2 km. Profile and
tangential curvature measured the concavity (nega-
tive values indicate valleys) and convexity of the bot-
tom (positive values indicate ridges) parallel and tan-
gential to major axes of the bottom slope. Sediment
grain sizes were selected from a map interpolated
from the usSEABED data base (Reid et al. 2005). The
sediment map had a spatial resolution of 2 km and
was constructed using sample bias correction, maxi-
mum a posteriori resampling, and a spline-in-tension
algorithm (Goff et al. 2006, 2008).

For pelagic data, we used conductivity, tempera-
ture and depth (CTD) profiles collected during each
NEFSC trawl survey to describe bottom tempera -
ture and salinity, water column structure and stabil-
ity (Table 1; www.nefsc.noaa.gov/epd/ocean/ Main
Page / ioos. html). We considered the ‘mixed layer’
depth at which density was 0.125 kg m–3 higher than
the surface (Levitus 1982), a stratification index cal-
culated as the difference in seawater density be -
tween the surface and 50 m, and Simpson’s potential
energy anomaly (PE; Simpson 1981, Simpson & Bow-
ers 1981). We calculated Simpson’s PE within the
upper 30 m of the water  column because the stability
index calculated for the entire water column was cor-
related with bottom depth.

A network of HF radar provided remotely sensed
measurements of surface currents (Table 1; http://
maracoos.org; frequency = 5 MHz; Barrick et. al.
1977). Radial current vectors from the network were
combined to produce hourly surface current maps
(resolution = 6 km). We de-tided the raw time series at
each HF radar grid point using a least-squares fit of
the 5 strongest principal body tide constituents (M2,
S2, N2, K1, and O1). These data were then low pass
filtered with a cutoff period of 30 h. We only used data
for grid points with signal returns of >25% yr–1. We
calculated 8 d average cross-shore and along-shore
velocity, variance in velocity, divergence (vertical ve-
locity) and vorticity within 10 km of each trawl. Diver-
gence and vorticity were calculated using finite dif-
ference. Divergence was calculated as the vertical
current velocity in m d–1 at a depth of 1 m. Vorticity
was normalized by the local Coriolis parameter. We
also calculated indices describing seasonal trends in
divergence and vorticity. Instantaneous divergence
values were as signed a new value of –1 if values were
<–0.1 m d–1, 0, if between –0.1 and +0.1 m d–1, or +1 if
values were >+0.1 m d–1. These new values were av-
eraged for each grid point to produce a mapped index
of up welling and downwelling potential for each sea-

son and year (e.g. see Fig. 3). Seasonal trends in vor-
ticity were calculated similarly using threshold values
of ±0.02. Values for the trawl samples were extracted
from the grids.

Satellite remote sensing provided surface tem -
perature, chlorophyll a (chl a), raw light absorption
and backscatter within 10 km of each trawl tow
(Table 1). Moderate Resolution Imaging Spectrometer
(http://oceancolor.gsfc.nasa.gov) data were binned
to 1 km resolution using standard data quality flags.
We considered measurements of sea surface temper-
ature, chlorophyll (mg m−3; e.g. see Fig. 3), and nor-
malized water-leaving radiance (W m−2 st−1 µm−1) at
412, 443, 488, 531, 551, and 667 nm in our analysis.

Ensemble clustering was applied to satellite sea
surface temperature and normalized water-leaving
radiance at 443 and 555 nm to classify water masses
using the methods of Oliver et al. (2004) and Oliver &
Irwin (2008). Clustering identified 27 water masses
within the study domain. We made time series maps
of the strengths of gradients along frontal boundaries
between these water masses (e.g. see Fig. 3) and
used them to compute distance (dkm) to, and gradient
strength (G) of the nearest front for each trawl sam-
ple. We then calculated a frontal index (FI) for each
station using the equation:

FI = ln(G/dkm +1) (1)

Values for the frontal index were therefore higher
for samples nearer to stronger fronts.

Many of 27 water masses identified with ensemble
clustering contained 5 or fewer trawl samples. Thus,
before final assignment of the samples to water masses,
we used k−means clustering of the original satellite
data to reduce the number of water masses from 27
to 8. Following this clustering, each of the 8 water
masses contained at least 20 bottom trawl samples.

Analysis

GAMs

We developed our statistical habitat models for
large juvenile and adult stage squid, butterfish, dog-
fish and summer flounder, using generalized additive
models (GAM) implemented with the mgcv package
in R software (Wood 2006). GAM is a nonparametric
multiple regression technique that does not require
shapes of abundance responses to habitat variables
to be specified a priori. It has been used to statisti-
cally model ecological relationships, including habi-
tat associations, and performs well in comparison
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with other methods (Pearce & Ferrier 2000, Ciannelli
et al. 2007, Ficetola & Denoël 2009). Like all regres-
sions, GAMs constructed with collinear independent
variables perform poorly. We therefore eliminated
intercorrelated variables prior to modeling, retaining
those most likely to affect important physiological or
behavioral processes (Table 1).

We standardized species abundances by trawl tow
distances and found they were best modeled using
an over-dispersed Poisson distribution. Using this
distribution required that we round abundances to
the nearest integer. Abundance in bottom trawls can
vary with time of sampling if animals exhibit diel
behavioral cycles, especially vertical migration (e.g.
Brodziak & Hendrickson 1999). As a result, we con-
sidered solar elevation at trawl locations and times as
a covariate in GAMs.

To construct GAMs we used a backward stepwise
procedure to select habitat covariates that minimized
the generalized cross validation statistic (GCV, Wood
2006). We set gamma to 1.4, which increased the
penalty for models of greater complexity (higher de -
grees of freedom). We set the maximum basis dimen-
sion of smoothers (k) to 4, which limited the complex-
ity of the response functions to the nonparametric
equivalent of a 3rd degree polynomial, and thus a
Gaussian-like response. These conservative settings
reduced our chances of over fitting the models. We
used smoothing splines to model single term covari-
ates which we eliminated beginning with those with
the highest p-values in approximate F-tests. We re -
tained only those habitat covariates producing lower
GCV and significant reduction in residual deviance
at the p < 0.05 level in analysis of deviance of nested
models, which were also likely to affect the animals
through mechanisms we understood. We examined
residual and convergence diagnostics throughout the
modeling process.

Following the construction of single term models,
we evaluated first order interactions among retained
covariates using tensor product smooths (Wood
2006). We found that nearly all significant first order
interactions included sea surface temperature (SST),
which was seasonally discontinuous between the
autumn (warm SST > 17°C) and the winter and
spring (SST < 15°C) surveys. As a result, we con-
structed a factor for season based upon SSTs (warm
[autumn] vs. cold [winter & spring]), and determined
whether abundance responses to the habitat covari-
ates were seasonally dependent. Seasonally depen-
dent habitat responses were retained if they pro-
duced lower GCVs and residual deviance in analysis
of nested models (p < 0.05). Once we formulated

these final models we added spatial co-variates (lati-
tude and longitude) to identify residual spatial varia-
tion in abundance that was not well described by
retained habitat covariates. We also included log-
transformed abundances of squid and butterfish as
covariates in spiny dogfish and summer flounder
GAMs to evaluate the effects of prey distributions on
distributions of the predators.

We used deviance partitioning (~variance partition-
ing) to quantify the independent and joint effects on
species distributions of habitat covariates included in
the final models which we organized into 3 sets: meso -
scale pelagic features described by OOS; pelagic fea-
tures based on CTD casts and benthic features mea-
sured with acoustics or bottom grabs (Borcard &
Legendre 1994, Cushman & McGarigal 2002). We
used partial GAM regression and nested analysis of
deviance to compute independent and intercorrelated
effects of the 3 variable sets on abundance patterns.

Model evaluation

We evaluated our GAMs using a cross valida -
tion out-of-sample prediction procedure that boot-
strapped Spearman correlations between standard-
ized abundance and abundance predicted with
 habitat covariates in the final GAMs. In each of 1000
iterations, 10% of the observations were randomly
selected using a uniform distribution and set aside as
test data. The remaining training observations were
used to fit abundance to the habitat covariates in -
cluded in the final GAMs. At each iteration the
trained GAM was used to predict the relationship
between habitat covariates and abundance in the
test data. Predicted abundances were then compared
with measured abundances in the test data using
Spearman’s rho. We calculated 50th, 5th, and 95th
quantiles to estimate median and 95% confidence
intervals for the bootstrapped rhos.

Demonstration projection of a habitat model

We modified the final summer flounder habitat
GAM to accept available raster data layers for the
autumn of 2008, and qualitatively compared this
model projection with animal collections made from
September 3 through November 13 during the
NEFSC bottom trawl survey. We selected autumn
2008 for the demonstration because it was nearest in
time to surveys used to train the habitat model (2003
to 2007) and because 2008 was the first year the
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MARACOOS HF radar network continuously moni-
tored surface currents throughout the MAB coastal
ocean from Cape Hatteras to Cape Cod. The October
1, 2008 model projection used 8 d averaged satellite
data and a 32 d rolling ‘seasonal’ trend in divergence
(see Fig. 3). In the demonstration, we eliminated sub-
surface measures of water column properties be -
cause estimates are not currently accessible in near
real time using operational remote sensing assets or
models.

RESULTS

The explanatory power of GAMs made for the 2
pelagic species, squid and butterfish, was higher
than for models made for spiny dogfish and summer
flounder (Table 2, Fig. 2). Our models accounted for
73% of abundance variation for pelagic species, and
~50% of the variation for the demersal species. Mod-
els for pelagic species incorporated more pelagic
habitat covariates measured with in situ CTD sam-
pling. Models for demersal species did not, however,
accept more of the benthic habitat covariates mea-
sured at relatively coarse spatial grains. Benthic
covariates did not have greater explanatory power in
demersal species models. Responses of the animals
to many of the habitat covariates were seasonally
dependent, and habitat distributions were better
described during the winter and early spring than
during the autumn when surface waters were strati-
fied and animals were migrating, or soon to migrate,
to overwintering habitats.

Bottom depth and variations in bottom depth (SD
depth) met selection criteria in GAMs for all 4 spe-
cies, and associations with seabed characteristics
were seasonally dependent in every case (Table 2;
see the Supplement at www.int−res.com/ articles/
suppl/ m438p001_supp.pdf). During winter and early
spring when temperatures were cold, the animals
were abundant in deeper, offshore waters. Squid,
butterfish, and summer flounder were most abun-
dant over bottoms with depths ranging from 50 to
150 m. Spiny dogfish were more abundant in shal-
lower habitats (<75 m). Deep overwintering habitats
for squid and summer flounder were topographically
complex (high STD depth) and located in the outer
Hudson shelf valley and along the edge of the con -
tinental shelf. During winter, dogfish were also
 abundant over complex bottoms. Butterfish were
more common over smooth bottoms. During autumn,
abundance varied with depth only for butterfish which
were rare over bottoms deeper than 150 m. Butterfish

preferred complex bottoms in the nearshore during
the autumn.

Bottom water temperature met selection criteria in
GAMs for all 4 species (Table 2, see Supplement).
Temperature responses of longfin squid, butterfish,
and summer flounder were not seasonally depen-
dent. All 3 species were rare where bottom tem -
peratures were <6.5°C. Summer flounder, butterfish
and squid were also uncommon on the continental
shelf where bottom temperatures were warmer than
12.5°C, 16°C, and 20°C, respectively. In contrast, the
temperature response of spiny dogfish was season-
ally dependent. The sharks overwintered where bot-
tom water temperatures were warmer than 7°C. Dur-
ing the autumn, dogfish preferred cool temperatures
measured in the northern part of the study area.

Water column stability measured in situ and in -
dexed as Simpson’s PE anomaly for the upper 30 m
of the water column met model selection criteria for
squid, butterfish and summer flounder, while the
abundance of butterfish also varied with mixed
layer depth (Table 2, see Supplement). Summer
flounder were consistently more abundant where
the water column was stable in the vicinity of estu-
arine plumes during the autumn and the outer con-
tinental shelf during the winter and spring. Both
pelagic species were more abundant where the
water column was unstable during the autumn. In
the winter, butterfish were more abundant where
the water column was stable and the mixed layer
was deep near the shelf slope front (see below, this
section). Water column stability and stratification
measured in situ varied negatively with surface cur-
rent velocities and positively with current variances
measured with HF radar. This produced relatively
high, intercorrelated habitat effects in GAMs for the
pelagic species (Table 2, Fig. 2).

Pelagic habitat characteristics measured remotely
with satellites and HF radar did not have consistently
greater explanatory power in models for the pelagic
species than the demersal species (Table 2, Fig. 2). At
least one remotely sensed pelagic characteristic met
selection criterion for each species and the indepen-
dent effects of remotely sensed variables were actu-
ally slightly higher in the GAM for summer flounder
than for the pelagic species (Table 2, Fig. 2, see
 Supplement).

Summer flounder, butterfish and squid were most
abundant in areas where the index of surface current
divergence, and thus upwelling potential, was high
(Table 2, Fig. 3, see Supplement). This response was
seasonally dependent for the 2 pelagic species, but
not for summer flounder.
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Species Habitat variable Deviance % of Null Partial deviance % of Null ΔGCV

Longfin inshore squid Bottom temperatures 260027.0 40.4 50878.0 7.9 150.7
Cross shelf velocitya 24295.0 3.8 24173.0 3.8 62.2
Watermass 135449.0 21.0 22388.0 3.5 59.6
Bottom deptha 214195.0 33.2 17068.0 2.6 41.7
STD bottom deptha 156599.0 24.3 14255.0 2.2 37.6
Sun’s elevationa 59145.0 9.2 13172.0 2.0 22.5
Simpson’s PE (30 m)a 77978.0 12.1 10939.0 1.7 21.1
Divergence indexa 24633.0 3.8 8038.2 1.2 15.4
Frontal indexa 5115.9 0.8 6971.1 1.1 6.3
Cross shelf variance (vel.) 8614.1 1.3 4051.5 0.6 10.0

Benthic habitat data 37586.0 5.8
Pelagic habitat data (in situ) 70533.0 10.9
Pelagic habitat data (remote) 80824.0 12.5

Final model 474644.5 73.7
Residual 169746.3 26.3
Null model 644390.8
Spatial coordinates 206838.0 32.1 66810.0 10.4 171.3

Butterfish Bottom deptha 40207.0 23.6 8846.3 5.2 21.3
Bottom temperature 27987.0 16.4 8152.1 4.8 23.7
Cross shelf velocitya 6343.5 3.7 8090.8 4.7 22.5
Sun’s elevation 4759.3 2.8 7229.3 4.2 16.5
STD bottom deptha 18282.0 10.7 6948.0 4.1 18.5
Divergence indexa 5482.3 3.2 6903.8 4.0 15.2
Mixed layer deptha 873.4 0.5 5490.5 3.2 12.1
Frontal indexa 23422.0 13.7 4922.1 2.9 11.8
Simpson’s PE (30 m)a 11882.0 7.0 4288.6 2.5 9.6
Cross shelf variance (vel.) 101.1 0.1 1335.1 0.8 3.2

Benthic habitat data 21218.0 12.4
Pelagic habitat data (in situ) 23151.0 13.6
Pelagic habitat data (remote) 21269.0 12.5

Final model 124984.6 73.2
Residual 45673.4 26.8
Null model 170658.0
Spatial coordinates 63635.5 37.3 17360.0 10.2 44.6

Spiny dogfish Bottom temperature a 42380.0 40.0 22554.0 21.3 35.7
Along shelf variance (vel.)a 21770.0 20.6 3938.9 3.7 5.3
Bottom deptha 7090.1 6.7 3409.8 3.2 4.5
STD bottom deptha 4008.4 3.8 2414.9 2.3 3.1
Sun’s elevation 3628.1 3.4 844.0 0.8 0.8

Benthic habitat data 5913.8 5.6
Pelagic habitat data (in situ) 22554.0 21.3
Pelagic habitat data (remote) 3938.9 3.7
Final model 53152.6 50.2
Residual 52670.0 49.8
Null model 105822.6
Prey [log(squid)] 29544.0 27.9 2434.2 2.3 3.1
Spatial coordinates 40954.6 38.7 15075.0 14.2 20.1

Table 2. Analysis of deviance from generalized additive habitat modeling of longfin inshore squid, butterfish, spiny dogfish
and summer flounder abundances in the Mid-Atlantic Bight coastal ocean (see also Fig. 2). Partial deviance is the additional
deviance ‘explained’ by each variable after effects of other variables were removed. Null model is an approximation of the to-
tal deviance (~ variance) in abundance data. % of Null expresses the deviance and partial deviance as a percentage of the Null
Model for each species. The decrease in the generalized cross validation statistic (ΔGCV) is indicated in the last column. Only
variables that resulted in an increase in GCV when they were removed in backward selection were included in the final 

models and reported here



Manderson et al.: Regional habitat modeling with ocean observatory data

During autumn, summer flounder was associated
with nearshore areas where chl a concentrations
were relatively high (Fig. 3, see Supplement). These
areas were in close proximity to estuarine plumes.
The animals were rarely collected where surface
chl a was highest during winter and spring.

Squid, butterfish and summer flounder abundance
varied with proximity to, and the strength of, surface
fronts identified with satellites (Table 2, Fig. 3, see
Supplement). Associations with fronts were strong
during cold seasons but weak or absent during the
autumn when the water column was warm and strat-
ified. The pelagic species were associated with fronts
on the outer continental shelf during the winter and
spring. Summer flounder were rarely collected close
to these strong fronts.

Although proximity to fronts between water masses
was important in 3 of 4 habitat models, water mass
type only met model selection criterion for longfin
squid (see Supplement). Squid were slightly more
abundant in water masses of moderate temperature,
salinity, and primary productivity that occurred over
intermediate bottom depths.

Squid and butterfish appeared to respond to cross
shelf surface current velocities (see Supplement).
During autumn, the animals were common where
strong surface currents were directed offshore. They
were abundant during winter and spring where high
surface current velocities were directed inshore. The
pelagic species also preferred areas where surface
current velocities were relatively consistent (low
variance in velocity). The response of spiny dogfish
to variance in velocity was similar.

During the winter and spring, summer flounder
and spiny dogfish were associated with the pelagic
species they prey upon on the outer continental shelf
(Table 2, Fig. 2, see Supplement). Both predators were
abundant where squid were abundant, while sum-
mer flounder were also associated with butterfish.

Maps of residual spatial variation made by adding
spatial covariates indicated that abundances of squid
and butterfish were lower in the nearshore off Long
Island, New York, than predicted based upon the habi-
tat covariates included in the final models (Table 2,
see Supplement). Squid were more abundant during
the winter offshore south of Hudson shelf valley,
while butterfish abundance was higher than pre-
dicted in the autumn just southeast of the Sandy
Hook peninsula where the Hudson-Raritan estuary
discharges into the coastal ocean. Dogfish abun-
dance was overestimated at the mouth of the Hud-
son-Raritan estuary and along the continental shelf
break based upon retained habitat covariates.
Finally, there was a cross shelf gradient in errors in
the GAM for summer flounder, which were less
abundant than predicted in the nearshore continen-
tal shelf, but more abundant offshore north of the
Hudson Shelf Valley.

The out-of-sample prediction test indicated that
habitat-specific trends in abundances of longfin
inshore squid, spiny dogfish and summer flounder
were well described by our GAMs (Fig. 4). Boot-
strapped rank correlations between predicted and
actual catches were >0.7 and confidence intervals
were relatively narrow for squid and spiny dogfish.
For the butterfish model, correlations between pre-
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Summer flounder Chlorophyll aa 2556.9
Bottom deptha 2955.5
Bottom temperature 1322.6
Frontal indexa 290.3
STD bottom depth 214.4
Divergence index 161.9

Benthic habitat data 1288.8 12.9
Pelagic habitat data (in situ) 676.7 6.8
Pelagic habitat data (remote) 1302.3 13.1

Final model 5017.8 50.4
Residual 4934.5 49.6
Null model 9952.3
Spatial coordinates 2462.8 24.7 652.3 6.6 1.2
Prey [log(squid)] 3379.7 34.0 1053.3 10.6 2.7
Prey [log(butterfish)] 3561.7 35.8 795.7 8.0 2.0
Both prey 1323.5 13.3 3.4

aResponse to habitat variable was seasonally dependent and different during cruises conducted when water was warm
(autumn) and cold (winter and early spring)

Table 2 (continued)

Species Habitat variable Deviance % of Null Partial deviance % of Null ΔGCV
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dicted and actual abundances were weaker and
 confidence intervals were wide.

Actual catches of summer flounder during autumn
2008 generally matched the dem onstration projec-
tion of the statistical habitat model we modified to
accept OOS ocean data for October 1. Catches were
relatively high offshore south of Martha’s Vineyard,
and in shallower water from the mouth of Long Island
Sound west to the mouth of the Hudson-Raritan estu-
ary to central New Jersey.

DISCUSSION

Broad scale dynamic habitat models for species
contributing resilience to large marine ecosystems
could be useful for space- and time-based ecosystem
management. However, operational habitat models
require sustained collection of high resolution data

describing pelagic and benthic processes
affecting the physiologies, be haviors and
ecologies of im portant species at the scale of
large marine ecosystems. These kinds of data
are much too expensive and time consuming
to collect using traditional shipboard tech-
niques. OOS are de signed to measure ocean
variability at the space–time scales necessary
to describe the fundamental physical and bio-
logical processes driving the spatial dynamics
of coastal marine ecosystems (Schofield et al.
2008). It is therefore not surprising that OOS
satellite and HF radar descriptions of meso -
scale oceanographic features and processes
were useful for modeling the habitats of sev-
eral ecologically important species in the
Mid-Atlantic Bight.

The availability of high resolution, spatially
explicit time series data for the Mid-Atlantic
Bight allowed us to build models of greater
explanatory power than would have been
possible using shipboard data alone. We built
our GAMs conservatively, constraining the
complexity of smoothers, increasing the pe -
nalty for model complexity, and considering
only habitat features affecting ecological pro-
cesses. Nevertheless, our models explained
50 to 70% of the variation in abundance of 4
species with diverse  vertical habitat prefer-
ences. Furthermore, out-of- sample prediction
capabilities of 3 of our 4 models were high.
GAM models developed using just shipboard
measurements of pelagic and benthic habitat
heterogeneity typically explain between 10 to

50% of abundance variation and generally have
poorer out-of-sample prediction capabilities than we
measured (e.g. Stoner et al. 2001, 2007, Jensen et al.
2005). Becker et al (2010) also demonstrated that
habitat models built with remotely sensed ocean data
of the proper resolution have predictive capabilities
as good or better than those made with analogous
shipboard data alone.

As OOS are designed to sample at the space–time
scales necessary to describe the physical and primary
production dynamics of the coastal ocean, we were
able to consider several fundamental processes con-
trolling ecosystem productivity in our statistical habi-
tat models. Measurements of vertical current ve -
locities, and locations and strengths of fronts were
the most valuable of these descriptors of processes
known to regulate and structure coastal ocean food
webs (Olson et al. 1994, Bakun 2010). Measurements
of vertical current velocities allowed us to consider
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Fig. 2. Partial deviance (~variance) components calculated from gen-
eralized additive model (GAM) habitat modeling for 4 species with
different vertical habitat preferences in the coastal ocean (see Table 2
and the Supplement available at www.int-res.com/ articles/ suppl/
m438p001_supp.pdf). Less of the abundance variation was ‘ex-
plained’ for demersal than for pelagic species, whose distributions ap-
peared to be more directly affected by water column stability and
mixed layer depth measured in situ. These variables were correlated
with HF radar surface current measurements. Percentages depicted
for Prey, IOOS remote, Pelagic in situ and Benthic habitat feature
groups are partial components after intercorrelated effects (also
shown) were removed. Spatial covariates were not included in this 

analysis

http://www.int-res.com/articles/suppl/m438p001_supp.pdf
http://www.int-res.com/articles/suppl/m438p001_supp.pdf
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spatial and temporal variation in upwelling and
downwelling potential in our models. Summer
 flounder were consistently abundant in areas of the
coastal ocean where the potential for upwelling was
high, while butterfish and squid showed seasonally
dependent associations with areas of upwelling.
Strong gradients in temperature, salinity, and/or
chl a are characteristic of ocean fronts where the
interaction of circulation with the buoyancies and
behaviors of organisms results in the concentration of
food web constituents along them (Helfrich & Pineda
2003, Genin et al. 2005, Bakun 2010). Our frontal
index, which integrated the strength of, and distance
to, the nearest frontal gradient met the selection cri-
terion in 3 of our 4 models. The pelagic species,
longfin inshore squid and butterfish, were collected
near strong surface fronts on the outer continental
shelf during winter and early spring. During the
same season, summer flounder were more abundant
inshore of these strong fronts.

If indices of surface divergence and fronts between
water masses referenced physical processes control-

ling the spatial structure and dynamics of coastal
ocean food, we might have expected species re -
sponses to be similar and stronger, and satellite mea-
surements of primary productivity to meet selection
criterion in more than one of our GAMs. However,
we modeled secondary and tertiary consumers with
trophic positions ranging from 3.5 (butterfish) to 4.5
(summer flounder), using only surface habitat fea-
tures measured directly overhead of trawl samples
(Bowman et al. 2000, Hunsicker & Essington 2006,
Smith & Link 2010). As these animals feed at high
trophic levels, they may, under many circumstances,
be distributed downstream and later in time than the
physics and primary productivity that ultimately sup-
ports them (Yamamoto & Nishi zawa 1986, Olson et
al. 1994, Bakun 2010). These sorts of space-time lags
are highly likely for demersal species like summer
flounder and spiny dogfish in deep overwintering
habitats that are linked by advection and prey
behavior to primary production at the surface along
the shelf slope front (Linder et al. 2004, Johnson et
al. 2007). Demersal predators at high trophic levels
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Fig. 3. Pelagic habitat gradients and predicted and realized summer flounder catches during autumn 2008. (A) Pelagic habitat variables
(8 d average except for divergence which was 32 d) on October 1, 2008 that were used to project a modified generalized additive model
(GAM) habitat model for summer flounder. The modified GAM did not include bottom temperature which was too sparsely measured du-
ring autumn 2008, and gradient index was replaced with gradient strength to make ‘forecasting’ tractable. The modified model included
log transformed SD of bottom depth as well as the 4 gradients shown in panel A. (B) Summer flounder abundance projected for October
1, 2008 from the modified GAM habitat model in the color gradient. The open red symbols are scaled to the catch of summer flounder per
unit effort (CPUE) in Northeast Fisheries Science Centre bottom trawl tows from September through mid-November 2008. + indicates 

tows in which fish were absent
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should be more strongly associated in space and time
with the prey they directly consume than with lower
trophic levels. We found spiny dogfish and summer
flounder to be strongly associated with the squid and
butterfish they feed upon during the winter and
spring (Torres et al. 2008, Moustahfid et al. 2009,
Smith & Link 2010, Stau dinger & Juanes 2010). In our
analyses, the predators were not associated with
these prey during autumn. However, during warmer
months, including the autumn, spiny dogfish are
more abundant north of our study domain, while
estuaries are important nurseries and summer feed-
ing habitats for summer flounder that are not sam-
pled in the NEFSC fishery independent bottom trawl
surveys (Packer et al. 1999, Stehlik 2009). Thus sea-
sonal changes in the importance of prey in our statis-
tical models for the demersal predators were proba-
bly related simultaneously to limitations of the data
we analyzed and to seasonal changes in habitat over-
lap between the specific predators and prey.

Primary productivity as indexed by satellite esti-
mates of chl a only met selection criteria in the model
for summer flounder during the autumn migration
and spawning period. (Fig. 3, see Supplement). Abun-
dance of the flatfish increased with increases in chl a
to a threshold, and the animals were associated with
plumes of moderately high chl a occurring  outside the
mouths of several large MAB estuaries where up-

welling potential was also high (Fig. 3). Areas of
coastal ocean impacted by estuarine plumes are opti-
cally complex, but the high concentrations of colored
dissolved organic matter and detritus that confound
satellite-based estimates of phytoplankton production
also contribute to high productivity (Moline et al. 2008,
Pan et al. 2010). The association of summer flounder
with estuarine plumes may be purely coincident with
migratory pathways between shallow estuarine and
coastal feeding habitats and overwintering habitats
offshore. However, Berrien & Sibunka (1999) reported
high densities of summer flounder eggs that have
stage durations of 48 to 72 h in these same locations
(Johns et al. 1981). We speculate that coastal ocean
areas impacted by estuarine plumes where upwelling
occurs and productivity is high could serve as high
quality spawning grounds that place eggs in close
proximity to optimal feeding habitats for larvae which
are at a lower trophic level of ~3 (Grimes & Kingsford
1996). These same areas also have physical transport
mechanisms likely to deliver larvae south and west
to important estuarine nurseries (Epifanio & Garvine
2001, Lentz 2008, Tilburg et al. 2009, Zhang et al.
2009, Gong et al. 2010). Spawning habitat selection
and suitability should be largely defined by conditions
promoting the development, survival and successful
transport of early life stages to juvenile nurseries
rather than by the immediate requirements of adults.
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Fig. 4. Bootstrapped (1000
iterations) Spearman cor -
relations (rho) between
 actual abundances and
abundances predicted using
habitat covariates in final
generalized additive models
(GAMs) for each of the 4
species generated with the
cross validation out-of-sam-
ple prediction procedure
(see ‘Materials and meth-
ods’). Solid lines indicate
median correlation while
dashed lines are 5th and
95th quantiles for the boot-

strapped rho values
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Distributions of the 2 pelagic species were related
to horizontal surface currents in our statistical habitat
models. During autumn migration, squid and butter-
fish were more abundant in areas where higher ve -
locity surface flows (and low variance) were directed
offshore, while the species were associated with high
velocity (low velocity variance) onshore surface flows
during the spring. Most swimming and flying ani-
mals exploit complex 3-dimensional flows to con-
serve energy, particularly during long-distance migra -
tions (Liao 2007, Mandel et al. 2008, Mansfield et al.
2009, Stehlik 2009). Associations of the pelagic spe-
cies with specific surface flows in our models may
have reflected the efficient use of cross shelf trans-
port pathways during seasonal migrations. However,
the animals were collected in trawls on the bottom
where current flows can be different to seasonally
complex surface flows (Lentz 2008, Gong et al. 2010).
Furthermore, areas with higher velocity, low vari-
ance surface flows also tended to have weakly strati-
fied water columns with shallow mixed layers. These
are also characteristics of productive habitats (Mann
& Lazier 2006, Bakun 2010). The inverse relationship
between horizontal surface currents and water col-
umn stratification and stability was largely responsi-
ble for the inter-correlated habitat effects and the
large amount of deviance explained in our models
for pelagic species (Fig. 2). Mechanistic studies are
therefore required to determine whether responses
of the 2 pelagic species captured by our models
reflected preferences for cross shelf transport path-
ways useful for energy efficient migration, physical
conditions promoting high primary productivity, or
for areas where both processes occur simultaneously.

The habitat associations of all 4 species, regardless
of vertical preference, were better described by the
pelagic than the benthic data available to us. Sedi-
ment grain sizes estimated at a spatial resolution of
2000 m did not meet selection criterion in any of our
GAMs and species associations with bottom depths
and seabed complexity measured at a grain of 93 m
and resolution of 2 km were seasonally dependent in
nearly every case. The interactions between bottom
depth and season captured inshore–offshore migra-
tions that were probably more directly related to the
seasonal dynamics of temperature and the tempera-
ture preferences of the animals than to depth prefer-
ences. All of the species except spiny dogfish showed
a seasonally independent response to bottom water
temperature with a minimum threshold of ~6.5°C.
The animals were concentrated in deep water near
the edge of the continental shelf during the winter
and early spring when water temperatures are gen-

erally warmer and less variable offshore than in -
shore. Abundance relationships with bottom habitat
complexity could have reflected species associations
with refuges from predation or current flow if our
coarser grained index served as a proxy for bottom
complexity at scales of tens of centimeters to tens of
meters. However, responses to bottom habitat com-
plexity were also seasonally dependent and complex
for 3 of the 4 species, and therefore probably aliased
other characteristics of overwintering habitats along
submarine valleys and canyons on the outer conti-
nental shelf. Animals respond to centimeter to 100 m
scale variability in bottom characteristics, and the
data available to us were just too coarse to describe
benthic habitat heterogeneity that might have di -
rectly affected the survival and energy budgets of the
animals (Abookire et al. 2007, Liao 2007, Stoner et
al. 2007, Gray & Elliott 2009). Centimeter to meter
scale descriptions of the structural complexity of the
seabed have been shown to increase the fit of habitat
models (Abookire et al. 2007, Stoner et al. 2007) and
the predictive capability of several of our models
might have increased if data describing bottom habi-
tat heterogeneity at finer, ecologically relevant scales
had been available for our study domain (e.g. Harris
& Stokesbury 2010). Higher resolution bottom data
might have improved our model for longfin inshore
squid, which deposit egg masses on hard structures
located on sand and muddy substrata (Jacobson
2005). However, it is also true that bottom character-
istics may be less important to large animals even
when they are strongly demersal. Habitat associa-
tions of age 1+ summer flounder on the continental
shelf are poorly described by fine scale characteris-
tics of the seabed identified with side scan sonar or
underwater video (Lathrop et al. 2006, Slacum et al.
2008). Our results are consistent with speculation
that distributions of the flatfish on the continental
shelf are determined primarily by mesoscale oceano-
graphic features controlling patterns of productivity
and prey distributions rather than by fine-scale sea -
bed characteristics (Slacum et al. 2008).

CONCLUSIONS

Resource managers are turning increasingly to
spatial management as a tool for conserving marine
populations and ecosystems (Pérez-Ruzafa et al.
2008, Worm et al. 2009, Edwards & Plagányi 2011).
Regional scale habitat modeling could serve as
the foundation for tactical decisions as to where and
when to site marine protected and closed areas
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designed to conserve species that provide essential
ecosystem services. While much of the seabed re -
mains unmapped, variability in the physical struc-
ture, dynamics and productivity of the water column
is being measured and mapped at ecologically rele-
vant space/time scales with remote sensing techno -
logy integrated into OOS. Furthermore, all OOS
are actively developing ensembles of oceanographic
models that assimilate data from sensors on satellite,
HF radar, underwater robot, and fixed mooring plat-
forms to make spatially and temporally explicit hind-
casts and forecasts of the structure and dynamics of
the coastal ocean including subsurface features (e.g.
Zhang et al. 2010a,b,c). Many of the pelagic features
and processes currently measured and modeled by
OOS determine patterns of habitat suitability for
 species and their life stages and could be considered
in spatial management (Game et al. 2009, Watson et
al. 2011).

In our view, several avenues of research need to be
pursued in order to develop habitat models useful for
spatial management. These include investigation of
the resolution and ranges of habitat variability mea-
sured with OOS resulting in biological responses,
including the identification of space–time lags be -
tween variability in physical and primary production
dynamics and responses of important upper level
consumers, particularly those associated with the
bottom. There is also a need for biological data, in
addition to trawl net surveys, to be integrated into
OOS (e.g. Kloser et al. 2009, Z̆ydelis et al. 2011). Cur-
rently, the data available for broad scale habitat mod-
eling are fisheries-independent surveys designed for
stock assessment, not habitat assessment. These sur-
veys are highly selective with respect to season and
organism size and often do not sample habitats used
during important periods in the life history of many
species. Infrequent traditional net surveys cannot be
used to distinguish dispersal corridors that many
 animals move through quickly from areas in which
fewer individuals take up longer term residency
because habitat resources meet the requirements of
particular life history stages. Finally, habitat models
based on abundance assume that organisms evaluate
habitat quality accurately, without perceptual and
movement constraints, and therefore reach abun-
dances at equilibrium with habitat carrying capacity
without time delays. This is probably rarely the case,
particularly in regions like the Mid-Atlantic Bight
where important habitat dimensions are highly dy -
namic in time and space and many animals are
highly migratory. Integration of telemetry and fishery
hydroacoustics data into regional OOS (e.g. Kloser et

al. 2009, Zydelis et al. 2011) would be useful for
addressing some of the sampling biases and assump-
tions inherent in habitat models based upon tradi-
tional fisheries survey data.

We view statistical habitat models informed by
OOS, such as those we have developed here, as a
first step toward the development of operational
mechanistic habitat models: As hypothesis-generat-
ing tools that can be coupled with OOS products to
perform mechanistic studies of the effects of pelagic,
as well as benthic, habitat heterogeneity on the pro-
cesses of growth, survival, dispersal and reproduc-
tion that underlie spatial population dynamics
(Kritzer & Sale 2006, Buckley et al. 2010). This type
of adaptive, iterative approach could be a cost-
effective way to develop mechanistic models with
scopes broad enough to meet the requirements of
spatial resource management in the sea.
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