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Abstract—A large body of work exists concerning uncertainty
in ocean current measuring high-frequency radar (HFR) systems.
This study investigates the magnitude of uncertainty present in
a HFR system in the lower Chesapeake Bay region of Virginia.
A method of assessing the fundamental performance of the HFR
is comparing the radial velocities measured by two facing HF
radars at the centre point of their baseline. In an error-free
network, radial vectors from the two sites would be equal and
opposite at a point on the baseline, so the magnitude of their
sum represents a measure of imperfection in the data. Often
essential information lies not in any individual process variable
but in how the variables change with respect to one another,
i.e. how they co-vary. PCA is a data-driven modelling technique
that transforms a set of correlated variables into a smaller set
of uncorrelated variables while retaining most of the original
information. This paper adopts PCA to detect anomalies in
data coming from the individual HF stations. A PCA model is
developed based on a calibration set of historical data. The model
is used with new process data to detect changes in the system by
application of PCA in combination with multivariate statistical
techniques. Based on a comprehensive analysis the study presents
an objective preconditioning methodology for preprocessing of
HFR data prior to assimilation into coastal ocean models or
other uses sensitive to the divergence of the flow.

I. INTRODUCTION

The technology of measuring surface current by high fre-
quency radar (HFR) has been rapidly expanding over the last
decade [1], having been used to study nearshore circulation
in a large variety of environmental conditions [2]–[6]. HFR
allows measurement along the conductive sea surface for
distances of up to 200km offshore at time intervals of 0.2-1h
[7]. HFR systems have a number of unique advantages in terms
of the observation of coastal ocean dynamics. These include:
providing real-time data over large ocean areas at relatively
low cost; enabling two-dimensional mapping of surface cur-
rents at resolutions that capture the complex structure related
to coastal bathymetry and the intrinsic instability scales of the
coastal circulation; as systematic input to operational ocean
models via data assimilation [8]; while HFR systems can also
play a role in environmental monitoring and event response
systems.

A large body of work exists concerning uncertainty in ocean
current measuring HFR systems. A study by Emery et al.
(2004) [9] comparing HFR and moored current meters in the
Santa Barbara basin indicated rms differences of 7− 19cm/s.
In a similar study by Essen at al. (2000) [10], the accuracy

of HFR was assessed by comparison with in situ current
meters. RMSD were in the range of 10 − 20cm/s; however,
the theoretical error of the HFR based on the sea state was
estimated to only be in the range 3 − 10cm/s. The rest was
assumed to be due to differences in the quantities measured,
e.g. the spatial averaging, point in water column at which
measurement recorded, etc.

Much of this work, however, focuses on direct comparisons
of radar observation versus an alternate sensor measurement,
be it ADCP, drifters or other current measuring instruments.
However, these comparisons introduce inherent complexities
due to additional errors being introduced from the second
sensor and also what is termed target difference: discrepancies
between both sensors due to the HFR typically measuring
different spatial and temporal scales. This study aims to isolate
individual errors in a HFR system; quantify the magnitude
of the error in a historical dataset; and finally, develop a
transportable algorithm that can be used to establish the
uncertainty in a real-time measuring system.

This paper describes research conducted by the authors in
assessing HFR uncertainty and the definition of a precondi-
tioning technique to lessen the impact of potential errors on
operational applications. A detailed dataset of HFR observed
currents was collected at 60 minute intervals for a 12 month
period (2012) encompassing a wide range of environmental
conditions. This dataset is used to provide insight into error
magnitudes associated with HFR systems. A multivariate
analysis procedure, Principal Component Analysis (PCA) is
used to detect anomalous measurements and reconstruct the
data with a reduced number of modes.

The approach adopted by the authors is presented in the
section on methodology; this section includes a description of
both the HFR system and the PCA methodology. The process
of reconstructing the data is described and the validation of the
technique against new data discussed. The section on results
presents a quantitative investigation of HFR error ranges; the
viability of using PCA to identify and reduce anomalous
data measurements is discussed. Finally, conclusions from
this research are drawn and the recommendations for future
research made.



II. METHODOLOGY

High frequency (HF) radar surface current data were pro-
vided by three radar systems located in the lower Chesapeake
Bay region of Virginia. Figure 1 presents the geometric con-
figuration of the three sites. These radar stations operate at 25
MHz and are a part of the Mid-Atlantic Regional Association
Coastal Ocean Observing System (MARACOOS). At each
site, radial current velocities were determined following the
method described in Lipa et. al. (2006) [11]. Radial maps
were generated with velocity vectors placed in 1.5 kilometre
range bins and 5 degree directional bins. Radial processing
algorithms utilized antenna response patterns measured at
VIEW and CPHN stations. An ideal antenna response pattern
was assumed at SUNS. Hourly surface current maps were
produced by a standard un-weighted least squares method
of combining radial data from individual radar sites onto a
defined grid [12]. The grid in this case was a nominally 2
kilometer spaced grid developed by the U.S. National HF radar
network [13]. Vector measurements returned hourly data and
the data covered a one year period, January - December 2012
(8784 hours).

The study investigates a number of techniques to elucidate
the inherent uncertainty of the system. As a means of assessing
the fundamental performance of the HFR, analysis compares
the radial velocities measured by two facing HF radars along
their baseline. This serves to localise data uncertainty as the
target difference is negligible if, both, the comparison is made
at the middle of the baseline and the electromagnetic wave
frequencies of the two sensors are the same. In an error-free
network, radial vectors from the two sites would be equal and
opposite at a point on the baseline, so the magnitude of their
sum represents a measure of imperfection in the data.

Often essential information lies not in any individual process
variable but in how the variables change with respect to one
another, i.e. how they co-vary. PCA is a data-driven modelling
technique that transforms a set of correlated variables into
a smaller set of uncorrelated variables while retaining most
of the original information. The first principal component
accounts for as much of the variability in the data as possible,
and each succeeding component accounts for as much of the
remaining variability as possible.

In computational terms the principal components are found
by calculating the eigenvectors and eigenvalues of the data
covariance matrix. In the case of vector observation (HFR
velocities in the horizontal plane), it is convenient to represent
the flow as complex number ~u = u + iv, where u and v
are the zonal and meridional components of flow respectively.
The data matrix (X) is constructed where each row is one
map of HFR measurements and each column is a time series
of observations for a given location. The data are detrended
so that each column has zero mean, the covariance matrix
computed by calculating R = XTX , and then we solve the
eigenvalue problem

RP = Pλ (1)

λ is a real diagonal matrix containing the eigenvalues λi of

R. The pi column vectors of P are the eigenvectors of R
corresponding to the eigenvalues of λi.

For each eigenvalue λi chosen we find the corresponding
complex eigenvector pi. Each of these eigenvectors can be
regarded as a map. These eigenvectors are the principal
components (PC) of the data. Each eigenvalue λi gives a
measure of the fraction of the total variance explained by the
mode. This fraction is found by dividing the λi by the sum of
all the other eigenvalues.

The pattern obtained when an eigenvector is plotted as a
map represents a standing oscillation. The time evolution of
an eigenvector shows how this pattern oscillates in time. To
see how PC1 ’evolves’ in time we calculate

−→
t1 = X−→p1 (2)

The n components of the vector −→t1 are the projections of
the maps in X on PC1, and the vector is a time series for the
evolution of PC1. In general for each calculated PCj , we can
find a corresponding −→aj . These are the principal component
time series or the expansion coefficients of the PCs. Just as
the PCs were uncorrelated in space, the expansion coefficients
are uncorrelated in time. We can reconstruct the data from the
PCs and the expansion coefficients:

X =

p∑
j=1

−→aj(pj) (3)

A common use of PCA is to reconstruct a cleaner version
of the data by truncating this sum at some j = N << p,
that is, we only use the PCs of the few largest eigenvalues.
The rationale is that the first N eigenvectors are capturing the
dynamical behaviour of the system.

III. RESULTS

A. Baseline Comparisons

Prior to more detailed comparisons, a direct comparison of
the radial velocity measured by the individual radar station
along the baseline between sites is investigated. Previous stud-
ies have demonstrated significant differentials when baseline
radial values are compared away from the central region due
to disparate horizontal averaging scales within the radial cells
[14], [15]. In this study, a midpoint between the two radars
is selected and all radial measurement within a 1km radius of
that point gathered from both sites.

Figure 1 presents the geometry of the radar sites and base-
lines. Figure 2 shows scatterplots of hourly radial velocities at
the midpoint of SUNS–CPHN (top), SUNS–VIEW (middle)
and CPHN–VIEW (bottom). All statistics were computed for
a one month period in December 2012. The solid line is the
regression line obtained from the principal component analysis
(PCA) which minimizes the sum of the square distance from
the point (x, y) to the regression line (y = Ax+B). PCA is
particularly suitable for this analysis because it provides the
symmetric regression line with respect to the two variables in
scatterplots, as opposed to other measures of regression such
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Fig. 1: Radial current synoptic vector map along with the
baseline between HF radar sites along and the mid-point
sampling region where radial values were compared (black
rectangle). The red diamond and rectangle denotes the location
of ADCP and weather station, respectively, used for the study.

as ordinary least squares which are more suitable for predictor-
observed comparisons. In addition, rms distances from the
regression line can be readily computed as an estimate of the
uncertainty in the radar. The regression coefficients (A and B),
correlation (COR), root-mean-square differentials (RMS), and
number of samples (NUM) are also presented.

Good agreement is observed between two of the radar
pairs (namely, SUNS–CPHN and SUNS–VIEW) reflected in
correlation scores of 0.81 and 0.84 respectively. The baseline
between SUNS–VIEW demonstrates very high agreement with
regression coefficients of (A = 0.91, B = −3.23cm/s).
Regression line coefficients from the SUNS-CPHN site (A =
0.61, B = 2.46cm/s) suggests that the variance from the
SUNS site is almost 40% greater than the CPHN site. The
relatively high rms figures between these sites further illus-
trates this. These agreement metrics are similar to comparable
studies in other HFR systems. In comparisons of four baseline
geometries in the Monterey Bay region, Paduan et al. [16]
observed a linear regression relationship ranging in slope
from 0.63 to 0.98, while correlation coefficients ranged from
0.6− 0.8. Similar analysis of HFR accuracy in the Tsushima
Strait [15], observed correlation in the range of 0.63 - 0.88 was
returned while the RMS varied between 5.75− 13.71cm/s.

Baseline comparisons between CPHN–VIEW provides an
interesting contrast. There is no evident agreement between
values measured by the facing radar stations. Further inves-
tigation of this identified the cause to be a thin strip of land
approximately 600m long beside the CPHN station over which
the baseline HFR signal travels before reaching open water.
This serves to distort the signal in this direction and result in
contaminated data measurement.
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Fig. 2: Scatter plot of radial measurements from the three
radar sites, SUNS–CPHN (top), SUNS–VIEW (middle) and
CPHN–VIEW (bottom) (see Figure 1) along their baseline
are presented. The solid line denotes the linear regression
computed from Principal Component Analysis. Radial mea-
surements returned at 30 minute intervals from the CPHN and
VIEW stations while SUNS operated at 60 minute intervals.



This analysis highlights the inherent uncertainty present
in HFR systems. In addition the CPHN–VIEW comparison
demonstrates the additional complexities involved and one of
the many factors that may impact on measurement accuracy
of a remote sensing installation. The next section investigates
this uncertainty further and discusses techniques to identify
and eliminate these measurement errors.

B. PCA

First analysis of HFR data focused on a two month period
June-July 2012. This time window was chosen since it was
hypothesised that flows would be at their most stationary
during this period avoiding both energetic winter storm events
and high river outflows during spring ice melts. As common
with sensor data percent coverage varies considerably over
the course of the study period. Gaps in the data need to be
accounted for prior to the application of PCA. Two approaches
were adopted:

• Only data from grid cells that returned data > 60% of
the time was used.

• Missing data in remainder of cells are interpolated from
neighbouring grids using standard linear interpolation
technique.

The PCA method was then applied to the data as described in
section II.

Figure 3 presents the spatial patterns of the first three PCs
for the time period June-July 2012 while Figure 4 displays the
associated time expansion coefficients. Cumulatively, these 3
PCs account for 74% of the total variance. Mode I is the
most dominant mode accounting for 54% with mode II and
III accounting for 13% and 7% respectively.

The consistent direction of flows in PC1 along with the high
proportion of variance explained suggests it to be connected
with tidal flows in the region. To investigate this hypothesis
further, PC1 was compared with an independent estimate
of the tidal signal. To estimate the tidal signal, data from
an Acoustic Doppler Current Profiler (ADCP) located in the
Southern Region of the inner-Bay was used (red diamond
in Figure 1). The ADCP data were processed via the t tide
software [17]; this decomposed the data into its harmonic
(tidal) and residual component. In conjunction with this the
HFR flow was reconstructed using PC1 only from the grid cell
nearest the ADCP location. Figure 6 presents time series plot
comparing the two datasets. The tidal signal is clearly evident
within the reconstructed data displaying close agreement with
the extracted tidal signal.

It is reasonable to expect subsequent PCs to be closely
related to wind forcing in the bay. Correlation coefficients
between PC2 and measured wind speeds from a weather
station located at the Chesapeake Bay Bridge Tunnel (Figure
1) however, did not provide significant correlation. Computing
a complex correlation coefficient [18] between the two vector
time series (wind speed and flows reconstructed with PC2

only) returned a correlation of 0.28 (where 0 indicates no
correlation and 1 represents perfect agreement) with higher

Fig. 3: PC spatial map patterns for modes I(top), II(middle)
and III(bottom)
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Fig. 4: First three principal component expansion coefficients
computed for June-July period (20 day window presented for
display purposes). The modal amplitudes are normalized by
their respective standard deviations.
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Fig. 5: Average counterclockwise angle derived from correla-
tion computations between wind speed and PC1 of the low
pass filtered HFR dataset.

agreement observed in the North-South direction when inves-
tigating correlation independently in the zonal and meridional
direction.

Analysis of the temporal evolution of the principal compo-
nents (Figure 4) indicates this to be a result of the residual
presence of tidal signal in this PC. To permit analysis of
the signal distinct from the tidal component we returned to
the original HFR data and low-pass filtered using a cosine-
Lanczos filter with a 40-hr halfpower point [19] to remove the
tidal signal from the data. Applying PCA to the filtered data
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Fig. 6: Plotting flows reconstructed from the first principal
component only against the estimated tidal signal in the bay.
Flows reconstructed for the HFR grid cell closest to the ADCP
probe. The tidal signal is computed by applying a harmonic
analysis to the near-surface ADCP data from the Chesapeake
Bay Bridge Tunnel.

gives insight into variability in the bay excluding the dominant
tidal signal. The expectation in this case was that PC1 would
be primarily a result of wind effects. Recomputing complex
correlation between PC1 and measured wind speeds returned
a value of 0.73 with this mode accounting for 50% of the total
variance of the filtered data. The PC pattern associated with
this mode is presented in Figure 7. The phase angle of the
complex correlation coefficient, by definition, gives a measure
of the average counterclockwise angle of the second vector
(wind speed) with respect the first. Figure 5 presents the phase
angle of correlation. Analysing the figure suggests reasonable
agreement between angle of flows and wind forcing. In the
outer bay, the angle is quite close to zero while in the inner bay
the discrepancy is plausibly a result of topographical steering
of the flow as it enters the bay and is directed Northwards into
the bay.

The development of a PCA model that is representative of
the raw data while excluding high frequency “noise” has two
important considerations

• the number of PCs to include in the reconstruction
• the choice of temporal window width to which to apply

the linear technique
The choice of number of PCs to retain is often times

empirical and case specific. The simplest criterion is to retain
enough PCs to represent a sufficient fraction of the total
variance. Jolliffe [20] suggests the range of fractional variance
between 0.7 and 0.9 may be a reasonable range. Applying total
variance explained cut off points of 70, 90 and 95% results in
retaining 2, 12, and 29 PCs respectively

Another subjective approach is based on the shape of the
graph of the eigenvalues. The method looks for a “knee point”
in the residual percent variance (RPV) plotted against the



Fig. 7: PC spatial map patterns for modes PC1 when the raw
data is low-pass filtered prior to the application of PCA.

number of principal components. The method is based on the
idea that the residual variance should reach a steady state when
the factors begin to account for random errors. When a break
point is found or when the plot stabilizes that corresponds to
the number of principal components to represent the process.
The RPV is computed based on residual eigenvalue:

RPV (k) = 100


m∑

j=k+1

λj

m∑
j=1

λj

% (4)

Analysing graph of the RPV (not presented) suggests that
steady state develops after 7 PCs.

An alternative criterion dictating which principal compo-
nents to retain is the Guttman-Kaiser criterion [21]: Principal
components associated with eigenvalues that are larger in
magnitude than the average, λ, of the eigenvalues or, better,
a somewhat lower cut-off such as λ∗ = 0.7λ, are retained.
Applying these criterion to this dataset would retain 20 and
25 of the principal components respectively. North et al.
[22] argue that a set of principal components with similar
eigenvalues should either be all retained or all excluded.
The size of gaps between successive eigenvalues is thus an
important consideration for any decision rule, and North et
al. (1982) [22] provide a rule-of-thumb for deciding whether
gaps are too small to split the principal components on
either side. The rule states that if the sampling error of a
particular eigenvalue λ

[
∂λ− λ

(
2
N

)1/2]
is larger than the

spacing between λ and a neighbouring eigenvalue, then the
associated PCs will have comparable sampling errors. This
implies that these eigenvectors are a random mixture of the
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Fig. 8: Time evolution of fraction of variance explained by
PC1 (top) and PC2 (bottom) for a range of window width.
The window width used are of three days (72 time points),
one, two, four and eight weeks.
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Fig. 9: RMSE computed between flows reconstructed from
PC1 (only) and the harmonic component of ADCP data for
zonal (top) and meridional (bottom) components. The flows
are reconstructed for the yearly dataset using five different
PCA window widths of three days (72 time points), one, two,
four and eight weeks.

true eigenvectors and could be excluded from the set. Applied
to this data results in retention of 9 PCs.

The second point demanding attention is the window width
of the PCA model. Up to now, we adopted a two month
window and assumed the data had near-stationary mean and
covariance structure for this time period. However, in such a
dynamic system as ocean surface currents, this assumption is
an area that requires further investigation.

To investigate how the process drifts with time we returned
to the original one year dataset and applied PCA to the entire



TABLE I: Mean and standard deviation (σ) of RMSE com-
puted between PC1 and harmonic component of Cape Henry
ADCP for a range of PCA window widths. Results are
presented decomposed into their zonal and meridional com-
ponents

Window Width Zonal rmse Merid rmse Zonal σ Merid. σ
1 day 25.04 16.96 7.84 6.91
3 day 24.71 16.99 5.57 7.20

1 week 24.74 16.46 4.89 4.47
2 week 24.72 16.48 3.72 3.82
1 month 24.89 16.41 3.48 3.81
2 month 24.75 16.46 3.68 3.85
3 month 24.67 16.53 3.75 3.56
6 month 24.77 16.07 2.02 3.55
1 year 26.61 16.49 - -

year with a range of window widths, namely: one day, three
day, and 1, 2, 4, 8, 12, 24, and 48 weeks.

Of interest was both the evolution in time of the PCs with
different time windows and also the degree of compression
provided by PCA as a function of time. As a preliminary step
the degree of compression was investigated by evaluating how
much of the total variance was explained by the first modes.
Figure 8 presents the variance explained by different PCA
models for the duration of the 48 week period. Analysing
the figure indicates that while the 4 and 8 week sampling
windows captures the general trend of the data, the linearity of
the technique results in a considerable amount of information
relevant to shorter time scales being neglected.

As a further measure of the amount of relevant informa-
tion extracted by the different applications we returned to
the information on the tidal signal gleaned from Figure 6.
Considering that the information contained in the PC1 is
strongly correlated with tide, it is reasonable to associate the
optimum compression of the data to that which best represents
the tidal signal extracted from the ADCP. Again, the flows
were reconstructed using PC1 only, at the grid cell nearest
the ADCP location at a range of window widths. To quantify
performance, root-mean-square-error (RMSE), was computed
between the reconstructed data and the tidal component and
the progression in time analysed. Figure 9 plots the resultant
differential.

As expected the general trend of the tidal signal is captured
with large sampling times (two months). Table I presents the
mean and standard deviation computed for the RMSE for the
year. While the means are in very close agreement, there is
considerable differences in standard deviation as would be
expected from a visual inspection of Figure 9. Apparent is that
with a high frequency sampling time, there are short periods
when the RMSE is considerably higher. This may be a result
of dynamicity present in the flow that cannot be captured by
PC1 or alternatively “noise” in the signal that a larger window
width effectively averages out.
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Fig. 10: MSE computed between reconstructed data for train-
ing and validation datasets

C. Application of model to validation set

Cross-validating the PCA model using new data is a means
of providing further objective insight into PCA model perfor-
mance. The basic idea of cross-validation is the use of different
datasets for estimation and validation of each PC model [23].
For all applications the data was split into two equal time
partitions: the training set used to construct the PCA model
and the validation set to assess performance of the model with
new data. PC models were determined using the training data
and then evaluated on the validation data. The application of
the method to new data involves making use of the scores of
the PCA model. The scores of the model are the projections of
the samples in the new coordinate system defined by the PCs.
Projecting the validation data Xval onto the same PCs gives
a reconstruction of the validation dataset X̃val = XvalP

TPT

which can be used to monitor changes in the system. The
skill of the model (as function of window width and mode
truncation) was evaluated with regards to optimum model
selection. The skill of the model in returning the raw data
can be represented by the mean squared reconstruction error
(MSE) defined as:

MSE =
1

nm
||X − X̃||2F (5)

where X is the raw data, X̃ is the data reconstructed from
PCA, n,m the dimensions of the matrix and ||X||F is the
Frobenius (or matrix) norm.

Figure 10 presents a comparison of the MSE computed for
both the training set and the validation set. Apparent is the
equivalent trend evident in both training and validation data
MSE. This suggests that the signal of the HFR contains such
similarities that prevent a simple decomposition of the noise
from the distinct signal. It also does not provide any useful
insight into the number of components required to describe
the process. To further the usefulness of the PCA model in
noise reduction a choice on number of PCs to retain must be
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Fig. 11: Hotelling’s T 2 statistic computed for a validation set
of 28 days. The PCA model was computed using a window
width of 7, 14 and 28 days and the validation set reconstructed.
For the 7 and 14 day window widths, the PCA model was
applied repeatedly using the previous dataset to best capture
the evolution of the mean of the dataset. The dashed line
represents the computed 95% confidence limit above which
the dataset is considered an “outlier”

made. Considering the similarities with other cutoff choices
and to permit for automated applications, the Guttman-Kaiser
criterion [21] discussed earlier, that retains all eigenvalues, q,
where λ > 0.7λ was adopted. The validation set was then
reconstructed as X̃val = XvalP

T
q P

T
q

To provide further insight into outliers in the dataset and
their origins, Hotelling’s T 2-test which is a multivariate rep-
resentation of Student’s t-test is adopted. It gives a measure of
the variation not captured by the model and can be expressed
as:

T 2
i = tTi Λ−1ti (6)

where λ = diag(λ1, λ2...λk) are PC eigenvalues. A range of
PCA models was constructed using different window widths
as described earlier and deviations from the model computed
using the T 2 measure. A multivariate process is considered
to be anomalous at the ith sampling time if T 2

i exceeds an
upper control limit. A limit for the 95% confidence level can
be expressed as:

T 2
lim =

K(N − 1)

N −K
F (K,N −K,α) (7)

whereF (K,N − K,α) corresponds to the probability point
on the F-distribution with (K,N-K) degrees of freedom and
confidence level α, K is the number of principal components,
and N is the number of observations.

Figure 11 presents the Hotelling’s T 2 statistic computed
for validation set of 28 days. The PCA model was computed
using a window width of 7, 14 and 28 days and the validation
set reconstructed. For the 7 and 14 day window widths, the
PCA model was applied repeatedly using the previous dataset
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Fig. 12: Spatial maps of T2 contributions to (a) total and (b)
eliminating cells that exceed limit until confidence interval
met corresponding to HFR measurements for julian day 181
at 05:00am (selected due high volume of anomalous returns
for representative purposes)

to best capture the evolution of the mean of the dataset.
The 95% confidence limit is also denoted. Apparent is the
considerable number of returns that exceed the computed
confidence intervals. In itself, the metric is of limited value
as it only provides a measure for the entire dataset at each
time return. To provide meaningful insight, the contribution
of each HFR grid cell to the total is more practical. A spatial
representation of the contribution can be computed as

tcon,i = tiλ
−1/2
i PT

k (8)

From Figure 11, it is apparent that the earlier portion of the
time window contains a number of points that exceed the con-
fidence limit by multiple orders of magnitude. For illustration
purposes we adopted the time return that corresponds to the
largest T 2 value (day 181 at 05:00am); i.e. the time when the
model performs poorest in capturing the variation of the data.



Figure 12 presents the spatial contribution of each grid cell to
the T2 score for this time.

It is evident that a region in the outer bay contributes a large
proportion of the total variation computed. The methodology
adopted for this study is the iterative elimination of cells with
maximum T 2 contribution until the confidence interval of the
dataset is met. Figure 12b presents the spatial map of T 2 after
the data is processed as described. For this particular case,
the elimination of outlier data reduces the number of return
by 40%. Analysis of the map of processed data suggests that
the data identified by the PCA model as being anomalous
is physically meaningful. Known issues exist regarding the
performance of the HFR in the outer Bay. The SUNS station
does not return radial measurements in this region due to
no direct over water line of sight (see Figure 1). Hence, the
meridional component of velocity is not well resolved in the
region resulting in an uncertain reconstruction of the flow.
Monitoring the incoming data with process control metrics
identify and eliminate measurements from this region. Other
areas with potential issues that are successfully identified
include the North inner Bay where distance from radar station
plausibly impacts performance and beside the headland in the
Northern Bay where the signal is distorted by the nearby land.

It is important to note that this data return represents
the most extreme outlier of all the data analysed. Hence,
the exclusion ratio of 40% can be considered a worst case
scenario. It also requires stressing that no pre-processing of
the data was conducted prior to analysis. Typically in HFR
applications, the data is pre-processed to eliminate particular
cells based on known performance issues such as low signal-
to-noise ratio, areas of high geometric dilution of precision
[9], extreme distance from radar measuring site, etc. No pre-
processing was performed in this study as the goal was an
objective analysis that would identify and eliminate outlier
data in an automated manner.

IV. CONCLUSIONS

This paper presents the application of multivariate process
control techniques to the analysis of surface current flows
collected by HFR system in the Chesapeake Bay area. To
better understand flows in the region. PCA de-constructs
the data based on the amount of variance present. Analysis
shows that this data-driven approach inherently links measured
flows to physical processes in the bay. The decomposition
into distinct spatial and temporal patterns serves as a means
to better understand and describe flow patterns and further
relate synoptic patterns to local environmental variables. It
also supports the viability of adopting PCA to partition the
physically driven signal present in the HFR measurement from
underlying noise.

Application of the technique to the validation dataset cor-
rectly identifies area that have known performance issues. In
this study we chose to remove these cells thereby reducing
the measurement area; an alternative option is to filter these
anomalous cells by truncating the reconstruction at fewer PCs

or applying a weighting coefficient to reflect the increased
uncertainty of these cells.

The research also highlights challenges in the application of
PCA to HFR data that requires further investigation. The high
spatial and temporal variability of the data makes a distinct
decomposition of flows into uncorrelated variables in space
and time difficult. The relative close proximity in time of
the measurements (hourly) imply that there is likely to be
correlation between measurements at adjacent time points,
resulting in non-independence between observations. Several
techniques exist that take account of correlation between
observations such as Singular Spectrum Analysis (SSA) or
frequency domain PCA [20]. Future work will focus on a more
detailed investigation of these relationships and combination
with multivariate process control metrics.
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