The Effect of Sea Surface Temperature on Sea Breeze Dynamics
Along the Coast of New Jersey

by

LOUIS A. BOWERS

A Thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science
Graduate Program in Oceanography
written under the direction of
Scott M. Glenn
and approved by

New Brunswick, New Jersey
October, 2004
ABSTRACT OF THE THESIS

The Effect of Sea Surface Temperature on Sea Breeze Dynamics
Along the Coast of New Jersey

By: Louis A. Bowers

Thesis Director:
Prof. Scott M. Glenn

The New Jersey sea breeze phenomenon is an important mesoscale feature during the warmer months of the year that can dramatically impact sensible weather in the coastal region of the state. Inaccurate meteorological forecasts of the sea breeze can have important ramifications for the public, marine, aviation, and public utility sectors in the heavily tourist laden coastal zone. This can lead to significant losses in terms of tourist dollars, as well as a lack of availability of energy during periods of peak demand, leading to brownouts on hot summer afternoons. Additionally, recirculation of air within the sea breeze circulation can lead to increases in pollution and any accidental or intentional release of toxic chemicals in the coastal zone.

The sea breeze is the result of the differential heating rates of the land and sea. The local temperature gradient near the immediate shoreline determines the behavior of the sea breeze; i.e. wind speed, temperature decrease, inland penetration, and sea breeze frontal shape. The behavior of the sea breeze is observed using visible imagery from satellites and radar reflectivity returns from National Weather Service Doppler radar, and the characteristics of the sea breeze can be monitored through the use of surface observations of wind, temperature, and relative humidity. Local variations in ocean
temperature due to coastal upwelling can impact the behavior of the sea breeze by increasing locally the magnitude of the land – sea temperature gradient in the coastal zone.

A mesoscale model was used to simulate two sea breeze case studies utilizing different ocean temperatures to study the sensitivity of sea breeze behavior to coastal upwelling. The results of these case studies convincingly show the effect of coastal upwelling on the sea breeze, and the importance of the inclusion of high-resolution sea surface temperature data in model simulations of the sea breeze phenomenon.
Acknowledgments

I would like to begin by thanking the Office of Naval Research, NOAA’s Cooperative Program for Operational Meteorology, Education and Training (COMET) Program, and the New Jersey Board of Public Utilities, and the Institute of Marine and Coastal Sciences (IMCS) at Rutgers University whose financial support helped to make this thesis possible. I would also like to thank the meteorological staff at the National Weather Service Forecast Office in Mount Holly, NJ, and especially Alan Cope for providing data crucial to this study over the past few years. I would like to thank the staff at the National Center for Atmospheric Research (NCAR) for their assistance compiling and using the WRF model software.

I would like to convey my deepest appreciation and gratitude for the support of my mentors on this project and throughout my undergraduate and graduate career, Dr. Scott Glenn, Dr. Richard Dunk, and James Eberwine. This thesis would not have been possible without their continuing guidance and assistance these past few years.

My sincerest thanks go out to the IMCS Computing Services team of Adam Porter, Charles J. Belmonte, and Robert Sharry for their help in setting up and maintenance of the computer systems critical to run the WRF model.

I would like to thank all of the support and friendship of the members of the Rutgers University Coastal Ocean Observation Lab (RU COOL) and my fellow graduate students.

I would not be here today without the never-ending support and love of my family, who always pushed me to reach for the clouds and beyond.

Finally I would like to thank my wonderful fiancée Suzanne, whose tremendous caring, emotional support, and understanding have allowed me to keep focused and to continue on with this project even during the worst of times.
Table of Contents

Abstract .. ii
Acknowledgements .. iv
Table of Contents ... v
List of Illustrations ... vii
CHAPTER 1: Introduction ... 1
 1.1: Purpose .. 1
 1.2: Characteristics of the Sea Breeze .. 6
 1.3: Outside Factors Affecting Sea Breeze Behavior ... 9
 1.4: Small-scale Variations in the Sea Breeze Front .. 11
 1.5: Offshore Characteristics of the Sea Breeze .. 12
 1.6: Coastal Upwelling Along the New Jersey Coast .. 15
CHAPTER 2: Sea Breeze Observations: Identification and Characteristics 19
 2.1: Surface Observational Evidence .. 19
 2.2: Remote Sensing of the Sea Breeze and Coastal Upwelling ... 20
 2.2.1: Weather Surveillance Radar – 88D Doppler Radar .. 20
 2.2.2: AVHRR Sea Surface Imagery .. 23
 2.2.3: AVHRR and MODIS Visible Satellite Imagery .. 24
CHAPTER 3: Sea Breeze Modeling .. 26
 3.1: Modeling Studies of Sea Breeze – Coastal Upwelling Behavior 26
 3.2: Weather Research Forecast Model .. 27
 3.3: AVHRR Satellite Sea Surface Temperature .. 29
CHAPTER 4: The New Jersey Sea Breeze ... 31
 4.1: Prior Studies of the New Jersey Sea Breeze ... 31
 4.2: New Jersey Sea Breeze Climatology .. 32
 4.3: Typical New Jersey Sea Breeze .. 34
4.4: Upwelling Enhanced New Jersey Sea Breeze ..38
4.5: The Offshore New Jersey Sea Breeze ..39

CHAPTER 5: Case Studies ..42
 5.1: Introduction ..42
 5.2: July 5, Northern Upwelling, Offshore Wind, Weak 850mb Flow44
 5.2.1: Synoptic Conditions ...44
 5.2.2: Simulations ..45
 5.2.2.1: July 5, 2004 SST ...45
 5.2.2.2: July 16, 2004 SST ..48
 5.2.2.3: Climatological Maximum SST ...49
 5.2.2.4: Results and Comparison ..51
 5.3: July 6, Central Upwelling, Offshore Wind, Strong 850mb Flow51
 5.3.1: Synoptic Conditions ...52
 5.3.2: Simulations ..52
 5.3.2.1: July 6, 2004 SST ...52
 5.3.2.2: July 16, 2004 SST ..55
 5.3.2.3: Results and Comparison ..57
 5.4: Sensitivity Study ..58
 5.4.1: Uniform 15°C SST ...59
 5.4.2: Uniform 17°C SST ...61
 5.4.3: Comparison ..62

CHAPTER 6: Summary and Conclusions ...64

Figures ..69

References ...136
List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Study Region</td>
<td>69</td>
</tr>
<tr>
<td>1a</td>
<td>Study Region with site locations</td>
<td>70</td>
</tr>
<tr>
<td>1c</td>
<td>Study Region with county names</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Box model of sea breeze</td>
<td>72</td>
</tr>
<tr>
<td>3a</td>
<td>Idealized effect of bay on sea breeze at 2 hours</td>
<td>73</td>
</tr>
<tr>
<td>3b</td>
<td>Idealized effect of bay on sea breeze at 2 hours</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Gemini XII image of Florida sea breeze</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>Gemini XI image of India sea breeze</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Bathymetry of New Jersey Coast</td>
<td>76</td>
</tr>
<tr>
<td>7a</td>
<td>Wind direction at Tuckerton, NJ July 8, 2000</td>
<td>77</td>
</tr>
<tr>
<td>7b</td>
<td>Wind speed at Tuckerton, NJ July 8, 2000</td>
<td>77</td>
</tr>
<tr>
<td>7c</td>
<td>Relative humidity at Tuckerton, NJ July 8, 2000</td>
<td>77</td>
</tr>
<tr>
<td>8a</td>
<td>Example WSR-88D Radar image</td>
<td>78</td>
</tr>
<tr>
<td>8b</td>
<td>Example hand-drawn analysis of Radar image</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>Example of AVHRR SST imagery</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>Example of AVHRR visible imagery</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>July 21, 2004 MODIS visible imagery</td>
<td>81</td>
</tr>
<tr>
<td>12</td>
<td>Sea Breeze climatology at Tuckerton, NJ</td>
<td>82</td>
</tr>
<tr>
<td>13</td>
<td>LEO summer SST</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>SST at LEO (1993-2002)</td>
<td>84</td>
</tr>
<tr>
<td>15</td>
<td>Radar indicated sea breeze June 29, 2004</td>
<td>85</td>
</tr>
<tr>
<td>16</td>
<td>Radar indicated sea breeze June 30, 2004</td>
<td>86</td>
</tr>
<tr>
<td>17</td>
<td>Radar indicated sea breeze July 1, 2004</td>
<td>87</td>
</tr>
<tr>
<td>18</td>
<td>WRF simulation April 16, 2004 1800 GMT</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>WRF simulation April 16, 2004 1800 GMT</td>
<td>89</td>
</tr>
</tbody>
</table>
Figure 20: Zoomed in MODIS image showing characteristics of the sea breeze

Figure 21 a: Sea breeze front at 1715 on July 1, 2003

Figure 21 b: Sea breeze front at 2111 on July 1, 2003

Figure 21 c: Sea breeze front at 2359 on July 1, 2003

Figure 22: Sea breeze front on July 4, 1994

Figure 23: SST 1257 GMT on June 5, 1994

Figure 24: Sea breeze front on June 26, 2001

Figure 25: SST 0956 GMT on June 26, 2001

Figure 26: SST 1233 GMT on June 23, 2000

Figure 27: Sea breeze front on June 23, 2000

Figure 28: SST 1510 GMT on July 25, 2003

Figure 29: Sea breeze front on July 26, 2003

Figure 30: Sea breeze front on August 2, 2001

Figure 31: SST 1054 GMT on August 2, 2001

Figure 32a: WRF simulation of wind speed April 16, 2004 at 1800 GMT

Figure 32b: WRF simulation of wind vector and speed April 16, 2004 at 1800 GMT

Figure 32c: WRF simulation of wind speed April 16, 2004 at 1900 GMT

Figure 32d: WRF simulation of wind vector and speed April 16, 2004 at 1900 GMT

Figure 32e: WRF simulation of wind speed April 16, 2004 at 2000 GMT

Figure 32f: WRF simulation of wind vector and speed April 16, 2004 at 2000 GMT

Figure 32g: Vertical cross-section through 39.0°N of vertical velocity

Figure 33: Sea breeze front on July 5, 2004

Figure 34: Sea breeze front on July 6, 2004

Figure 35: 850 mb wind speed July 5, 2004 at 1200 GMT
Figure 36: 850 mb wind speed July 6, 2004 ...107

Figure 37: SST for July 5, 2004 ..108

Figure 38a: WRF simulation of air temperature July 5 SST case
at 2000 GMT ..109

Figure 38b: WRF simulation of wind vector July 5 SST case
at 2000 GMT ..109

Figure 38c: WRF simulation of air temperature July 5 SST case
at 2200 GMT ..109

Figure 38d: WRF simulation of wind vector July 5 SST case
at 2200 GMT ..109

Figure 39a: WRF simulation of 500 m vertical velocity at 1700 GMT110

Figure 39b: WRF simulation of 500 m vertical velocity at 2200 GMT110

Figure 40a: Vertical cross-section for 39.4°N at 2000 GMT of air temperature
and wind vectors ..111

Figure 40b: Vertical cross-section for 39.8°N at 2000 GMT of air temperature
and wind vectors ..111

Figure 40c: Vertical cross-section for 40.2°N at 2000 GMT of air temperature
and wind vectors ..111

Figure 41: SST for July 16, 2004 ..112

Figure 42a: WRF simulation of air temperature July 5 SST case
at 2000 GMT ..113

Figure 42b: WRF simulation of wind vector July 5 SST case
at 2000 GMT ..113

Figure 42c: WRF simulation of air temperature July 5 SST case
at 2200 GMT ..113

Figure 42d: WRF simulation of wind vector July 5 SST case
at 2200 GMT ..113
Figure 43: Wind vector difference at 2000 GMT ...114
Figure 44: Climatological maximum SST ...115
Figure 45a: WRF simulation of air temperature July 16 SST case
 at 1800 GMT ..116
Figure 45b: WRF simulation of wind vector July 16 SST case
 at 1800 GMT ..116
Figure 45c: WRF simulation of air temperature July 16 SST case
 at 2200 GMT ..116
Figure 45d: WRF simulation of wind vector July 16 SST case
 at 2200 GMT ..116
Figure 46: SST for July 6, 2004 ..117
Figure 47a: WRF simulation of air temperature July 6 actual SST case
 at 1600 GMT ..118
Figure 47b: WRF simulation of wind vector July 6 actual SST case
 at 1600 GMT ..118
Figure 47c: WRF simulation of air temperature July 6 actual SST case
 at 1800 GMT ..118
Figure 47d: WRF simulation of wind vector July 6 actual SST case
 at 1800 GMT ..118
Figure 47e: WRF simulation of air temperature July 6 actual SST case
 at 2000 GMT ..119
Figure 47f: WRF simulation of wind vector July 6 actual SST case
 at 2000 GMT ..119
Figure 47g: WRF simulation of air temperature July 6 actual SST case
 at 2200 GMT ..119
Figure 47h: WRF simulation of wind vector July 6 actual SST case
 at 2200 GMT ..119
Figure 48a: Vertical cross-section for 39.4°N at 2000 GMT of air temperature and wind vectors ...120
Figure 48b: Vertical cross-section for 39.8°N at 2000 GMT of air temperature and wind vectors ...120
Figure 48c: Vertical cross-section for 40.2°N at 2000 GMT of air temperature and wind vectors ...120
Figure 49a: WRF simulation of air temperature July 6, July 16 SST case at 1600 GMT ...121
Figure 49b: WRF simulation of wind vector July 6, July 16 SST case at 1600 GMT ...121
Figure 49c: WRF simulation of air temperature July 6, July 16 SST case at 1800 GMT ...121
Figure 49d: WRF simulation of wind vector July 6, July 16 SST case at 1800 GMT ...121
Figure 49e: WRF simulation of air temperature July 6, July 16 SST case at 2000 GMT ...122
Figure 49f: WRF simulation of wind vector July 6, July 16 SST case at 2000 GMT ...122
Figure 49g: WRF simulation of air temperature July 6, July 16 SST case at 2200 GMT ...122
Figure 49h: WRF simulation of wind vector July 6, July 16 SST case at 2200 GMT ...122
Figure 50a: Vertical cross-section for 39.4°N at 2000 GMT of air temperature and wind vectors ...123
Figure 50b: Vertical cross-section for 39.8°N at 2000 GMT of air temperature and wind vectors ...123
Figure 50c: Vertical cross-section for 40.2°N at 2000 GMT of air temperature and wind vectors

Figure 51a: SST difference between July 6 and July 16 SST

Figure 51b: Air temperature difference July 6 and July 16 SST at 2000 GMT

Figure 51c: Wind vector difference at 2200 GMT

Figure 52a: WRF simulation of air temperature 15°C SST case at 1500 GMT

Figure 52b: WRF simulation of wind vector 15°C SST case at 1500 GMT

Figure 52c: WRF simulation of air temperature 15°C SST case at 1800 GMT

Figure 52d: WRF simulation of wind vector 15°C SST case at 1800 GMT

Figure 52e: WRF simulation of air temperature 15°C SST case at 2000 GMT

Figure 52f: WRF simulation of wind vector 15°C SST case at 2000 GMT

Figure 52g: WRF simulation of air temperature 15°C SST case at 2200 GMT

Figure 52h: WRF simulation of wind vector 15°C SST case at 2200 GMT

Figure 53a: Wind vector difference at 1600 GMT

Figure 53b: Wind vector difference at 1800 GMT

Figure 53c: Wind vector difference at 2000 GMT

Figure 53d: Wind vector difference at 2200 GMT
Figure 54a: Air temperature difference between 15°C and 17°C SST cases at 1600 GMT ...132

Figure 54b: Air temperature difference between 15°C and 17°C SST cases at 1800 GMT ...132

Figure 54c: Air temperature difference between 15°C and 17°C SST cases at 2000 GMT ...132

Figure 54d: Air temperature difference between 15°C and 17°C SST cases at 2200 GMT ...132

Figure 55a: Vertical cross-section for 39.8°N at 2000 GMT of air temperature and wind vectors for the uniform 15°C SST case133

Figure 55b: Vertical cross-section for 39.8°N at 2000 GMT of air temperature and wind vectors for the uniform 17°C SST case133

Figure 56a: Vertical cross-section for 39.4°N at 2000 GMT of air temperature and wind vectors for the uniform 15°C SST case134

Figure 56b: Vertical cross-section for 39.4°N at 2000 GMT of air temperature and wind vectors for the uniform 17°C SST case134

Figure 57a: Vertical cross-section for 40.2°N at 2000 GMT of air temperature and wind vectors for the uniform 15°C SST case135

Figure 57b: Vertical cross-section for 40.2°N at 2000 GMT of air temperature and wind vectors for the uniform 17°C SST case135