The following resources related to this article are available online at www.sciencemag.org (this information is current as of March 16, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/323/5920/1470

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/323/5920/1470/DC1

This article cites 26 articles, 6 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/323/5920/1470#otherarticles

This article appears in the following subject collections:
Ecology
http://www.sciencemag.org/cgi/collection/ecology

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula

Martin Montes-Hugo,1 Scott C. Doney,2 Hugh W. Ducklow,3 William Fraser,4 Douglas Martinson,5 Sharon E. Stammerjohn,6 Oscar Schofield1

The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a ~63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.

O

ver the past several decades, the marine ecosystem along the western continental shelf of the Antarctic Peninsula (WAP) (62° to 69°S, 59° to 78°W, ~1000 by 200 km) has undergone rapid physical climate change (1). Compared with conditions in 1979 at the beginning of satellite data coverage, seasonal sea ice during 2004 arrived 54 ± 9 (1 SE) days later in autumn and departed 31 ± 10 days earlier in spring (2). Winter air temperatures, measured between 62.2°S, 57.0°W and 65.3°S, 64.3°W, warmed at up to 4.8 times the global average rate during the past half-century (3–5). This warming is the most rapid of the past 500 years and stands in contrast to a marked cooling between 2700 and 100 years before the present (5–7). As the once-perennial sea ice and glaciers retreat (6, 8), maritime conditions are expanding southward to displace the continental, polar system of the southern WAP (9).

As a result, populations of sea ice–dependent species of lower and higher trophic levels are being demographically displaced poleward and are being replaced by ice-avoiding species (e.g.,

5Coastal Ocean Observation Lab, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA. 6Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 7The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA. 8Polar Oceans Research Group, Post Office Box 368, Sheridan, MT 59749, USA. 9Lamont-Doherty Earth Institute, Palisades, NY 10964, USA. 10Ocean Sciences, University of California, Santa Cruz, CA 95064, USA.

*To whom correspondence should be addressed. E-mail: montes@marine.rutgers.edu

References and Notes
6. See supporting material on Science Online.
24. We thank A. Riter for her editing and proofreading of the manuscript. GSD data are available at ftp://ftp.ncdc.noaa.gov/pub/data/gisd.

Supporting Online Material
www.sciencemag.org/cgi/content/full/323/592/1468/DC1
Materials and Methods
Figs. S1 to S7
Table S1
References
22 October 2008; accepted 23 January 2009
10.1126/science.1167549

7423 (2007).
24. We thank A. Riter for her editing and proofreading of the manuscript. GSD data are available at ftp://ftp.ncdc.noaa.gov/pub/data/gisd.

Supporting Online Material
www.sciencemag.org/cgi/content/full/323/592/1468/DC1
Materials and Methods
Figs. S1 to S7
Table S1
References
22 October 2008; accepted 23 January 2009
10.1126/science.1167549
The northern WAP subregion (A) and the southern WAP subregion (B) show different trends in chlorophyll a (Chl a) concentration changes between the summers of 1978 to 1986 (past period) and 1998 to 2006 (present period), calculated for the northern and southern WAP subregions. Chl a\(^{\text{past}}\) is the monthly average of satellite-derived Chl a (mg m\(^{-2}\)) from 1978 to 1986; Chl a\(^{\text{present–past}}\) is the arithmetic average of pixel-by-pixel differences in satellite-derived Chl a between the 1978 to 1986 period and the 1998 to 2006 period; dChl a\(^{\%}\) and dChl a\(^{\text{lin} \times \text{deg}}\) are relative changes in monthly averaged Chl a (100 Chl a\(^{1978-1986} \div \) Chl a\(^{1978-1986}\)) based on satellite-derived and shipboard Chl a measurements, respectively. Significant increase (+) or decrease (−) of Chl a indicated with a confidence limit of 95% (*) and 99% (**) symbols; two SE shown in parentheses.

Table 1

<table>
<thead>
<tr>
<th>Subregion</th>
<th>December</th>
<th>January</th>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl a(^{\text{past}})</td>
<td>1.39 (0.11)</td>
<td>5.59 (0.20)</td>
<td>2.96 (0.18)</td>
</tr>
<tr>
<td>dChl a(^{\text{present–past}})</td>
<td>−1.36 (0.26)**</td>
<td>−5.43 (0.26)**</td>
<td>−12.0 (0.49)**</td>
</tr>
<tr>
<td>Chl a(^{%})</td>
<td>−97.8**</td>
<td>−97.1**</td>
<td>−71.6**</td>
</tr>
<tr>
<td>Chl a(^{\text{lin} \times \text{deg}})</td>
<td>−25.2*</td>
<td>−21.0**</td>
<td>−74.0**</td>
</tr>
<tr>
<td>Southern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl a(^{\text{past}})</td>
<td>0.89 (0.03)</td>
<td>0.89 (0.02)</td>
<td>0.94 (0.03)</td>
</tr>
<tr>
<td>dChl a(^{\text{present–past}})</td>
<td>+1.25 (0.08)**</td>
<td>+0.49 (0.03)**</td>
<td>+0.02 (0.14)</td>
</tr>
<tr>
<td>Chl a(^{%})</td>
<td>+140.4**</td>
<td>+55.1**</td>
<td>+2.1</td>
</tr>
<tr>
<td>Chl a(^{\text{lin} \times \text{deg}})</td>
<td>+228.6**</td>
<td>+13.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Since the 1970s, there has been a 7.5% areal decline in summer sea ice throughout the WAP, with the declines varying regionally (Fig. 1, blue bars, and fig. S5, A and E). Cloudiness (Fig. 1, pink bars, and fig. S5, B and F) and wind patterns (Fig. 1, black bars, and fig. S5, C and G) have also changed during the past decade. In the 1970s, overcast skies tended to be positively associated with windy conditions, but in the past 10 years this covariation has weakened considerably (fig. S5, B, C, F, and G). Surface winds have become more intense (up to 60% increase) during mid to late summer (January and February) (Fig. 1 and fig. S5, C to G). Overall, these climate variations were associated with a 12% decline in Chl a over the entire study region (Table 1) that resembles Chl a declines reported in northern

In the northern subregion of the WAP (61.8° to 64.5°S, 59.0° to 65.8°W), the skies have become cloudier, winds persistently stronger (monthly mean up to 8 m s⁻¹), and summer sea ice extent less, conditions favoring deeper wind-mixing during the months most critical for phytoplankton growth (December and January) (Fig. 1 and fig. S5, A to D). Hence, phytoplankton cells inhabiting these waters have been exposed to a deeper mixed layer and overall less light for photosynthesis (14) that may explain the dramatic Chl a decrease (seasonal average, 89%) detected in recent years (Fig. 1, Fig. 2A, and Fig. S5D). Additionally, recent declines of Chl a over the northern WAP subregion might also be partially related to a greater advection of relatively poor-Chl a waters coming from the Weddell Sea into the Bellingshausen Sea through the Bransfield and Gerlache Straits (18). A Chl a decrease was less evident during February (Table 1), which suggests that increased mixing early in the growth season caused a lag in phytoplankton bloom initiation but did not influence Chl a levels as strongly later in the growth season. Two possible trigger mechanisms for such a delay are stronger winds [up to 5.4% increase, January (table S5)] and an insufficient volume of fresh water from melting sea ice [up to 79% less in ice-free summer days translates into more favorable conditions in the UML (e.g., increased light) for phytoplankton growth]. Together these environmental changes are expected to enhance photosynthesis and favor Chl a accumulation due to lower light limitation.

Regions with high Chl a levels in the WAP are characterized by a larger fraction of phytoplankton with fucoxanthin, a pigment marker for diatoms, and a larger fraction of relatively large cells (>20 μm) (contribution of cells >20 μm to total Chl a ≥ 0.5) (Fig. 2B). Therefore, the observed trends of decreasing Chl a in the northern subregion and increasing Chl a in the southern subregion are likely accompanied by shifts in community composition with a greater (lesser) fraction of diatoms and large cells in the southern (northern) region. This restructuring of the phytoplankton community has major implications for biogeochemical cycles of the WAP region. Large (>5 μm) phytoplankton contribute 80% of the particulate organic carbon export at high latitudes, with diatoms making up the majority of large phytoplankton export in the Southern Ocean (19).

Historical shipboard measurements of Chl a within the study area confirmed the general north-south transitions seen in the satellite data with higher (lower) phytoplankton biomass in the southern (northern) WAP subregion in the past decade compared with 1978 to 1986 (Table 1 and tables S3 and S4). In fact, available field measurements during January and February evidenced a greater occurrence of phytoplankton blooms (Chl a > 5 mg m⁻³) in the northern (southern) WAP subregion from 1978 to 1986 (1987 to 2006) (SOM Text, S6D) (16).

In the northern WAP, the maximum chlorophyll values measured by satellite (up to 40 mg m⁻³, January) or in situ (up to 38 mg m⁻³, February) were larger in the past (1978 to 1986) compared with the present (1997 to 2006). Conversely, in the southern WAP this pattern was reversed, and spaceborne and shipboard observations consistently showed higher pigment values in the last decade (satellite, up to 33 mg m⁻³; ship, up to 25 mg m⁻³, January) (tables S4 and S5). Monthly Chl a differences between northern and southern WAP locations were also statistically coherent.
with satellite-derived and field Chl a trends, and in both cases latitudinal phytoplankton biomass gradients were greater during January compared with February (Fig. 1 and tables S4 and S5).

Our study provides evidence for the occurrence of substantial and statistically significant latitudinal shifts at the base of the Antarctic Peninsula marine food web that may be contributing to observations of an apparent reorganization of northern WAP biota during the past decade [e.g., *Euphausia superba* (Antarctic krill), *Pleuragramma antarcticum* (Antarctic silverfish), and *Pygoscelis Adeliae* (Adélie penguin)] that rely on ice-edge diatom blooms (20, 21). The southward relocation of phytoplankton patches with abundant and large cells (>20 μm) due to local alterations in environmental variables is expected to exacerbate the reduction of krill abundance in the northern WAP. This represents a setback for the survival of fish (silverfish) and birds (Adélie penguins) that depend on krill but favors other species, including *Electrona antarctica* (Lanternfish), *Pygoscelis papua* (Gentoo penguin), and *Pygoscelis antarcticus* (Chinstrap penguin) (21, 22).

The observed latitudinal response of phytoplankton communities along the WAP with respect to historical sea ice variability can be compared with that estimated from geological proxies for similar paleo-oscillations in sea ice extent and rate of change identified during the Holocene (5, 23, 24). Paleo-records show that analogous climate variations have occurred in the past 200 to 300 years, and over longer 2500-year cycles, with rapid (decadal) transitions between warm and cool phases in the WAP (5, 25, 26). In this study (~30 years), the Chl a trend evidenced in the southern subregion of the WAP presented similar characteristics to those trends detected during typical interneoglacial periods (~200 to 300 years) (i.e., high phytoplankton biomass and presumably productivity, due to less area covered by permanent sea ice) (26). Since the 1970s, Chl a trends over the whole WAP were also attributed to other factors not necessarily ice-related (e.g., spatial differences in cloud cover) (27) or coupled with the length of the ice-free season (e.g., wind-driven changes in mixed layer depth) (14, 15, 28) that were equally important in determining phytoplankton blooms.

This work suggests that a combination of atmosphere-, ice-, and ocean-mediated processes have been shaping the along-shelf distribution of phytoplankton biomass over the WAP region since the 1970s. The shift toward higher Chl a to the south was first detected using ocean color imagery and subsequently confirmed with in situ historical measurements. The spatial asymmetry of decadal changes in Chl a reported here may explain the ongoing latitudinal compositional changes in fish, zooplankton, and marine bird species over the WAP, a testimonial to which may be the recent success of krill recruitment and the bonanza of krill feeders in nearby Marguerite Bay (68.3°S, 68.3°W) (29).

References and Notes

16. Materials and methods are available as supporting material on Science Online.

A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis

Giuseppe Di Fede,1 Marcella Catania,1 Michela Morbin,1 Giacomina Rossi,1 Silvia Suardi,1 Giulia Mazzoleni,1 Marco Merlin,1 Anna Rita Giovagnoli,1 Sara Prioni,1 Alessandra Erbetta,2 Chiara Falcone,3 Marco Gobbi,2 Laura Colombo,3 Marten Beeg,4 Claudia Manzoni,4 Bruna Francescucci,5 Alberto Spagnoli,5 Laura Cantù,5 Elena Del Favero,6 Efrat Levy,7 Mario Salmona,7 Fabrizio Tagliavini2

β-Amyloid precursor protein (APP) mutations cause familial Alzheimer’s disease with nearly complete penetrance. We found an APP mutation [alanine-673→valine-673 (A673V)] that causes disease only in the homozygous state, whereas heterozygous carriers were unaffected, consistent with a recessive Mendelian trait of inheritance. The A673V mutation affected APP processing, resulting in enhanced β-amyloid (Aβ) production and formation of amyloid fibrils in vitro. Co-incubation of mutated and wild-type peptides conferred instability on Aβ aggregates and inhibited amyloidogenesis and neurotoxicity. The highly amyloidogenic effect of the A673V mutation in the homozygous state and its anti-amyloidogenic effect in the heterozygous state account for the autosomal recessive pattern of inheritance and have implications for genetic screening and the potential treatment of Alzheimer’s disease.

A central pathological feature of Alzheimer’s disease (AD) is the accumulation of β-Aβ in the form of oligomers and amyloid fibrils in the brain (1). Aβ is generated by sequential cleavage of the APP by β- and γ-secretases and exists as short and long isoforms, Aβ1-40 and Aβ1-42 (2). Aβ1-42 is especially prone to misfolding and builds up aggregates that are thought to be the primary neurotoxic species involved in AD pathogenesis (2, 3). AD is usually sporadic, but a small fraction of cases is familial (4). The familial forms show an autosomal dominant pattern of inheritance with virtually complete penetrance and are linked to mutations in the APP, presenilin 1, and presenilin 2 genes (5). The APP mutations close to the sites of β- or γ-secretase

References and Notes

16. Materials and methods are available as supporting material on Science Online.