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Dams, fishways, and other hydropower structures have been utilized for centuries and have largely 

been unevaluated regarding their effects on the surrounding fish populations. Conventional methods 

(seining and angling) used for such evaluation are often costly and time consuming. The aim of this project 

is to decrease analysis time by automating fish detection with the use of video monitoring and evaluating 

two computer vision algorithms: background subtraction and machine learning algorithm You Only Look 

Once (YOLO). We evaluated these algorithms on video data collected from the Island Farm Weir on the 

Raritan River in New Jersey. Our results indicate that background subtraction models need to be adaptive 

with respect to time due to the dynamic aquatic environment, and YOLO needs to be trained and tested on 

the user’s specific case study dataset for optimal results. 
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Introduction 

Commercial, recreational, and subsistence fishing have long supported communities along the U.S. 

east coast. Many important coastal and inland fish species in this region are diadromous (i.e., different 

stages of their life cycle are spent at sea or in freshwater). Management of these fisheries is paramount to 

a successful blue economy, but many have seen declines due to industrialization, riverine pollution, and the 

development of hydropower structures (Keen et al., 2018). Dams are a major barrier to the spawning 

migrations of anadromous fish species (i.e., a type of diadromous fish that spawn in freshwater but spend 

their adult lives in the ocean) (Xu & Matzner, 2018). Anadromous species are important for coastal and 

inland fisheries and studying the effects of such impediments on these populations is a critical component 

of management and conservation. It is imperative to develop a method that evaluates these effects in a 

timely manner, especially if the species in question is endangered, so that reports, protections, and other 

management decisions can be enacted with minimal delay (Salman et al., 2019; Xu & Matzner, 2018). To 

restore depleted anadromous fish populations, many dams have been removed or equipped with fish 

passage devices (fishways), that allow upstream migrating fish to bypass dams (Franklin et al., 2012). 

Although dams and fishways have been around for centuries, there have been few studies 

evaluating the effectiveness of fishways on fish passage (Matzner et al., 2017; Salman et al., 2019). New 

Jersey is no exception to the proliferation of dams and lack of efficacy studies on constructed fishways. The 

largest river basin (Raritan) in New Jersey has been subject to the construction of five dams, of which three 

have been removed, including the most downstream structure – the Calco Dam – in 2011 (NOAA & USFWS, 

2016). After the removal of the Calco dam, the Island Farm Weir (IFW), located between Manville and 

Bound Brook, is the most downstream obstruction that migrating species encounter (NOAA, 2016). This 

low-head dam was equipped with a vertical-slot fish ladder in 1995 and became functional in 1996 (Boriek, 

2013). See Figure 1. It is important to study the effects of the fishway at the IFW because American shad 

(Alosa sapidissima) and river herring (Alosa aestivalis and Alosa pseudoharengus) are species of concern in 

this region (NOAA & USFWS, 2016), and the results would be integral for further management and 

conservation. 
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Figure 1. A) Aerial view of the Island Farm Weir and fish ladder. B) Island Farm Weir schematic showing the 
entrance and exit of the ladder, positions of antenna for the PIT tag detection, viewing room camera location, and the 
direction of river flow and fish passage. Images modified from Vastano et al. (2018). 

 

American Shad and River Herring Restoration 

Historically, large numbers of American shad would migrate up the Raritan River to their spawning 

grounds (NOAA & USFWS, 2016; Darrow & Neilan, 2013). This migration was integral to the local economy 

during early human settlement in the area (Darrow & Neilan, 2013). After the 1900s, when the area became 

heavily populated, shad numbers decreased due to the construction of dams and overfishing (Darrow & 

Neilan, 2013). Attempts to rebuild the shad population include stocking efforts, fishway construction, 

recreational and commercial fishing limits, and dam removal (NOAA & USFWS, 2016; Darrow & Neilan). 

There have been few reports on the efficiency of the IFW fish ladder conducted by the New Jersey 

Department of Environmental Protection (NJDEP) up until 2012, and continued evaluation has been 

conducted by the Jensen Lab at Rutgers University from 2012 to present. Field observations have been the 

best way to evaluate fish passage (Vastano et al., 2018). Conventional methods used to evaluate the success 

of fish passage include capturing fish using a 300-foot-long seine net and angling (hook and line), in addition 

to video monitoring (Vastano et al., 2018). American shad and river herring that are sampled via physical 

capture methods undergo surgical insertion of a passive integrated transponder (PIT) tag. The PIT tag gives 

the individual a unique identification number and when they near the fish ladder the tag is detected by a 

series of antennae throughout the fish ladder (Vastano et al., 2018). These sampling methods are often 

carried out three to four times a week during the sampling season (Vastano et al., 2018). Over a six-year 

period from 2012 to 2017, a study performed by Vastano et al. (2018), tagged a total of 50 American shad 
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and 116 river herring. These small sample sizes make analysis of fish behavior difficult. In that same six-year 

period, IFW video data was manually analyzed and there were over 27,000 recorded observations of fish 

passing through the fish ladder. Because the video data captures nearly all fish traversing the fish ladder, it 

can be used to calculate annual run size, arrival time, determine large-scale patterns in fish movements, 

and this long record allows for multi-year analyses and comparisons (Vastano et al., 2018). These methods 

vastly increase the data coverage but are time consuming and challenging to analyze. 

Video equipment with infrared lighting at the fish ladder allows for 24/7 monitoring during the 

spawning season, accumulating well over 2,160 hours of video footage per year (Vastano et al., 2018). 

Manual analysis (i.e. species identification, fish count, and passage timestamp) is highly effective, but 

difficult, and analysis of video from one spawning season requires about 720 hours of technician effort (it 

takes approximately 8 hours to view a 24-hour section of video). 

The goal of this project is to decrease manual labor time by automating the video analysis process 

using computer vision, a technique used to enable computers to gain high-level information from input 

images analogous to how the human brain analyzes images, to perform object detection. To accomplish 

this, we implemented and evaluated two computer vision algorithms: background subtraction using 

OpenCV-Python (Bradski, 2000) and a machine learning algorithm, You Only Look Once (YOLO) version 3 

(Redmon et al., 2016). 

IFW Video Data 

The IFW fish ladder is a vertical slot fishway, with a viewing window located by the exit of the 

ladder on the upstream side. One side of the window is in contact with the river flow, while the other side 

is a dry chamber (Figure 1B). The dry chamber houses an infrared-capable security camera (Speco model# 

CVC-627B), paired with a mini DVR (ATV DYK14G 1-Channel Mini DVR) that records to a 32GB SD card. 

Additionally, an infrared weather resistant LED spotlight (11", 18 Watt, 850 nm wavelength, 

superbrightLEDs Model# LBIR-850-35) was installed above the viewing window to provide further 

illumination of the water column seen through the viewing window. This allows recording to take place 
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continuously during the sampling season (mid to late March until July 1st) when river conditions allow for 

safe deployment of the video monitoring equipment. Data gaps in the video data may occur throughout 

the sampling season due to rain events that cause the river discharge to increase such that river conditions 

no longer allow for safe deployment of the video monitoring equipment. Therefore, the equipment may be 

removed multiple times per season, for several days at a time. A range of river condition examples captured 

in the video dataset are presented in Figure 2. In Figure 2A and 2B, the viewing area is uniformly lit, and the 

water is clear; these good day and good night conditions allow for effective fish detection. However, the 

aquatic environment is dynamic, and its changes can generate poor fish detection conditions like those seen 

in figure 2C and 2D. In these images the water is murky, the light shimmering in the water column, and 

erratic reflections of light are present. These dynamic changes may generate false positive detection if these 

changes surpass the detection limits defined in the algorithm. This system outputs a sequence of video files 

with a frame rate of 12 frames per second (FPS) and a duration of about 30 minutes. 

 

Figure 2. Example images from the IFW dataset. The algorithm performs well during good day (A) and good 
night (B) conditions when the water is clear, the light is uniform throughout the viewing area, and there is low 
turbulence. During bad day (C) and bad night conditions (D), when there are large anomalies, such as the shimmering 
light rays due to high turbulence and the erratic reflections that cause changes larger than the set parameterizations, 
there will be a drop in the algorithm performance due to the increase in false positive detection.  
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Background Subtraction Methods 

Background subtraction, specifically the frame differencing method, is a relatively simple algorithm 

for detecting moving objects in each image or video (Amandeep & Goyal, 2015). This is accomplished by 

initializing a static background frame (i.e. an image where objects of interest are not present) by selecting 

the first frame (Figure 3A) and converting the color channels to grayscale (i.e. intensities 0 to 255) (Figure 3 

color bar). The first frame becomes the baseline that is used to calculate the frame difference between the 

first frame and subsequent frames (e.g. frame0 – frame 28 in Figure 3C) (Amandeep & Goyal, 2015). This 

algorithm calculates the absolute difference between the pixels based on grayscale intensities (e.g. 

detected foreground objects will have a brighter intensity [white] than the background [black]) (Figure 3D) 

(Amandeep & Goyal, 2015) and it is filtered with a  threshold (e.g. 25) on an intensity scale from 0 to 255. 

Intensities above the threshold are assigned as foreground objects while the intensities below the threshold 

will be assigned as background (Figure 3E). Thus, based on light intensity differences between two images 

and a threshold set by the user, pixels are assigned a binary map of 0 or 1, in which background (unchanged) 

pixels are 0 and foreground (changed or motion) pixels are 1. In addition, a size constraint is added where 

foreground objects smaller than a certain size (described by a radius of a circle) are excluded from the 

analysis. The result (Figure 3F), is a recorded .AVI video clip containing the frames where the algorithm 

detected and contoured those specified changes. This software will continue to record until there are no 

changes that surpass the specifications (i.e. intensity threshold and radius) for a specified buffer time (e.g. 

no movement for 12 frames). When the algorithm works correctly, these clips should contain instances 

when fish are present and exclude times where no fish ‘objects’ are present, and thus reduce the length of 

video that needs to be manually evaluated by researchers for fish identification. The background 

subtraction algorithm is coded using community developed packages in Python, including numpy, pandas, 

OpenCV, pytesseract and matplotlib. 
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Figure 3. Background subtraction example: A) Raw video file. B) Grayed out first frame. C) Grayed out 28th 
frame. D) Frame difference from B minus C. E) Threshold of D. F) Contoured video file generated from threshold and 
radius parameterizations. The range of grayscale intensities, 0 [black] to 255 [white], is presented by the color bar and 
associated with B, C, and D. 

 

Background Subtraction Results & Discussion 

We executed this method using a combination of intensity thresholds [25, 50, 75, 100] and radii 

[10, 35, 60, 85 pixels] on a video from March 19, 2019 (Table 1).  This sample video was manually evaluated 

frame by frame to test the skill of the background subtraction method. This video contains 1,819 frames 

where a fish is present and 18,337 frames that do not contain fish, totaling 20,156 manually identified 

frames. These manually identified frames define the condition positive (P) (i.e., the total number of frames 

with fish present) and condition negative (N) (i.e., the total number frames without fish present), which are 

the total number of positive and negative events, respectively. The environmental conditions in this video 

were clear towards the top of the viewing area and murky at the bottom, with large rays of light shimmering 

in the water column, as in Figure 2B. Changing the two parameters (threshold, radius) elicit changes in the 

sensitivity or True Positive Rate (TPR) (e.g. true positives (TP) divided condition positive or TP/P) and 

specificity or 1 - False Positive Rate (FPR), where FPR is false positives (FP) divided by condition negatives 
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or FP/N) (Fawcett. 2006). When the sensitivity or TPR increases, the specificity decreases (i.e., the FPR 

increases), and vice versa (Fawcett, 2006). 

 

Table 1.  Background subtraction results for a range of parameter values. Calculated true positive ratio, false 
positive ratio, and percent time reduced for thresholds [25, 50, 75, 100] and radii [10, 35, 60, 85] combinations. The 
row in bold is the best parameter combination. 

To evaluate the performance of the algorithm classifier (parameter combinations: threshold and 

radius), we use a receiver operating characteristic (ROC) curve, which is a two-dimensional graphical 

depiction of the tradeoffs between the TPR plotted on the y-axis and the FPR plotted on the x-axis. Like 

Matzner et al. (2017), we defined our algorithm performance objectives to be 90% TPR and 30% FPR. These 

performance objectives are subjective, depending on what tradeoffs between TPR and FPR the user is 

willing to accept. In our case, we aimed to detect as many fish as possible at the cost of some false positive 
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detections. Ideally, the algorithm would detect 100% true positives, 0% false positives, and reduce the 

viewing time to only fish events. In ROC space, this perfect classification would yield a point at (0,1) 

(Fawcett, 2006). This means that the model would have a good measure of separability or distinguishing 

between positive and negative classes (i.e. the detection of fish). If the model did not have the ability to 

distinguish between classes (i.e. random classification), the resulting points would land on the diagonal line 

y = x or the line of no discrimination (Fawcett, 2006), as represented by the black solid line in Figure 4. The 

parameter combination that results in random classification is threshold 25 and radius 10, which yields 98% 

TPR and 96% FPR with minimal video time reduction. 

Although the small threshold and radius values result in random classification, our sample analysis 

suggests that the algorithm has some measure of separability given that the majority of the points that 

make up the ROC curve are above the line of no discrimination when thresholds are greater than 25 and 

pixel radius greater than 10. The parameter combination that optimizes this method is threshold 75, radius 

10 resulting in a 74.4% TPR and 41.9% FPR and reduced the video time by approximately 53.13% (Figure 4). 

Upon manual analysis of the false positive detections, the conditions that triggered the algorithm were 

changes in the environment due to the dynamic characteristics associated with aquatic environments (e.g., 

changing light conditions, unequal spectral propagation, particle scattering, debris floating by such as 

vegetation, light attenuation, and variations in turbidity). These dynamic changes are often detected as 

foreground objects (i.e., fish) because they are large and in motion, exceeding the threshold and radius 

parameterizations.  For the scope of this project, we gather that an increase in threshold and radius (i.e., 

decreasing sensitivity) will decrease algorithm detections, whereas, a decrease in threshold and radius (i.e., 

increasing sensitivity) will increase algorithm detections (Figure 4). As the true positive rate and false 

positive rate increase, the percent of video time reduced decreases (Figure 4). The objective is to maximize 

fish detection; therefore, a good measure of percent time reduction should be based on the FPR (i.e., the 

resulting video to be analyzed will be majority fish events with minimal false positives). The caveat to this 

result is that it is from one video and it is only representative of a narrow range of environmental conditions. 
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To optimize or generalize the results even further, a manual analysis would need to be applied to the 

broader dataset. 

 

Figure 4. The first panel is the Receiver Operating Characteristic curve for the algorithm at the different 
thresholds and radii. The black line indicates the 0.5 performance measure, or the line of no discrimination, in which 
the algorithm would have the inability to distinguish between classes (positives and negatives). The color indicates 
the percent of the video time reduced. To test the parameter space of the background subtraction algorithm the 
second and third panels are plots of threshold as a function of radius where color represents the true positive rate 
and false positive rate for each combination. 

 

One shortcoming of these results is that our algorithm uses the first frame to define the 

background and does not update over the duration of the video. This proved to be problematic when the 

environment captured in the viewing window changed over time or when there was an object present in 

the first frame, thus producing changes in subsequent frames that resulted in false positive detections (e.g. 

the fish in the first frame of Figure 3B). To improve the background subtraction algorithm, statistical 

background modeling should be employed. Background modelling allows for the algorithm to become 

adaptive as the time goes on by utilizing several methods (e.g., moving average, adaptive Gaussian Mixture 

Model (GMM), color and texture models) (Matzner et al., 2017; Prasad et al., 2018). A study conducted by 

Matzner et al. (2017), evaluated the performance of three different background subtraction models: Robust 

Principal Components Analysis (RPCA), Gaussian Mixture Model (GMM), and Video Background Extraction 

(ViBE). All three of their tested algorithms performed better compared to our simple background 

subtraction algorithm with results as followed: RPCA 71.64% TPR 42.52% FPR; GMM 80.60% TPR 47.92%; 

ViBE 87.76% TPR 45.65% FPR (Matzner et al., 2017). Our optimal performance of 74.4% TPR 41.9% FPR only 

contends with the performance of the RPCA model and when compared to the other models tested by 
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Matzner et al. (2017), RPCA performed the worst. Also, Prasad et al. (2018) tested 22 background 

subtraction algorithms ranging in complexity (e.g., mean background, GMM, machine learning-based 

methods, among many others) and their results indicated that adaptive background modeling enhances 

algorithm performance compared to simplistic background subtraction methods. While Matzner et al. 

(2017) and Prasad et al. (2018) show that adaptive background modeling can enhance performance, 

background subtraction alone still does not meet performance objectives of 90% TPR and 30 % FPR. 

Additionally, the adaptive background model’s performance was susceptible to the same environmental 

conditions that hindered our simple, non-adaptive background subtraction algorithm’s performance (e.g.,  

light rays in the field of view, low contrast between the objects and the background, vegetation the same 

size as objects of interest, color variations) (Matzner et al., 2017; Prasad et al., 2018). While these results 

may indicate the background subtraction algorithm’s potential to aid in data reduction in the context of fish 

detection, there is still a significant challenge in meeting performance goals. In addition, background 

subtraction does not aid in a second important stage of analysis for these types of data: object classification 

(i.e. fish species identification). Significant manual labor time is thus still required for object classification. 

YOLO Methods 

To improve performance metrics while also tackling the species identification problem, we began 

to explore and evaluate a more complex computer vision algorithm, object detection, using an open-source 

machine learning algorithm, YOLO version 3. Object detection is a common computer vision technique in 

which images are processed based on identifying and locating features that are representative of an 

assigned class or classes. Labeling video data is accomplished by dividing the video into frames and drawing 

a bounding box or contour around that object with an associated label (class) manually. Once the labeled 

dataset is created, the machine learning model is trained, tested, and evaluated. YOLO accomplishes this in 

one evaluation by 1) resizing the input image 2) running the single convolutional network consisting of 24 

initial layers that extract the features and 2 fully connected layers that predict the output probabilities and 

confidence 3) thresholds the output by model confidence (Redmon et al., 2016). We then threshold the 

model confidence with an ignore threshold of 0.6 (i.e., want the model to be 60% confident or better that 
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the detection is a true positive), which is at the discretion of the user. This means that if a detection has a 

model confidence equal to or above 0.6 it will be classified as a positive. If the model confidence is below 

0.6, it will be classified as a negative. YOLO is a model that reasons globally (i.e., it views the entire image 

and all the objects it contains) which gives it the ability to implicitly encode contextual information (i.e., 

learn generalizable representations of objects) about class type and appearance directly from the full image 

(Redmon et al., 2016). YOLO can process in near real-time at 45 frames per second (Redmon et al., 2016). 

Reducing IFW video analysis time is not only cost-effective, but also, more time can be allocated to 

conducting phenology studies on species of interest, calculating annual run size, and evaluating interannual 

variability in fish migration. 

Run pre-trained model on IFW dataset 

We used Xu and Matzner’s (2018) implementation to evaluate the generalization performance of 

YOLO on the same IFW video that was manually analyzed and used in the background subtraction analysis. 

This means that Xu and Matzner’s (2018) dataset was used to initialize training, and the IFW dataset was 

excluded from training and used only for evaluation. Specifically, we utilized their pre-trained model that 

was trained on three marine hydrokinetic and hydropower datasets: Voith Hydro located in Scotland, UK; 

Wells Dam located in Washington, USA; and Igiugig located in Alaska, USA, which contains salmonid species 

of Chinook and Sockeye salmon at various life stages (Xu & Matzner, 2018). This dataset contains 54,516 

frames with associated annotations and was trained for 20 epochs to achieve the best model weights (Xu 

& Matzner, 2018). We executed the pre-trained model using a range of combinations between two 

parameters defined by Xu and Matzner (2018) as the object threshold (i.e., the threshold to distinguish 

between object and non-object) and the nms threshold (i.e., the threshold that determines if two 

detections are duplicates) seen in Table 2. When applied to the IFW video, the pre-trained YOLO model 

results in few true positive and false positive detections. The best performance was 29% TPR and 23% FPR 

and reduces the video time by 76.6% (Table 2). In ROC space, these points are in the lower left-hand corner 

(Figure 5) and indicate that the model is ‘conservative’ (Fawcett, 2006). Therefore, the model will only make 
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positive classifications with strong evidence and will have low false positive detections, but this often results 

in low true positive detections (Fawcett, 2006). 

 

Table 2. Pre-trained YOLO results for a range of parameter values. Calculated true positive ratio, false positive 
ratio, and percent time reduced for object threshold and nms threshold combinations. The row in bold is the best 
parameter combination. 

 

Figure 5. The Receiver Operating Characteristic curve for the pre-trained YOLO results at different object and 
nms threshold combinations. The black line indicates the 0.5 performance measure, or the line of no discrimination, in 
which the algorithm would have the inability to distinguish between classes (positives and negatives). The color 
indicates the percent of the video time reduced. 

 

Our results indicate that this model is not robust enough to detect features that were not 

contained in the training dataset (i.e., unlearned features will be excluded). For example, our dataset 
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contains different camera specifications, lighting conditions, turbidity, water flow, direction in which fish 

traverse, and fish species (e.g., American shad, river herring, bass, white sucker, etc.). All these new features 

need to be incorporated into the training dataset to elicit accurate detection for our specific case study. 

This falls in line with Xu and Matzner’s (2018) generalization test where they reserved the Igiugig dataset 

from training (i.e., only used Voith Hydro and Wells Dam during training) and tested the model on all three 

datasets. This experiment resulted in good detections for the two datasets (Voith Hydro and Wells Dam) 

that were used during training, and very poor detection results for the dataset (Igiugig) excluded during 

training (Xu & Matzner, 2018). Both their and our results show that it is imperative to train the model on 

the user’s specific case study for the model to correctly detect fish (Xu & Matzner, 2018). 

Conclusion 

Commercial, recreational, and subsistence fisheries are important components to maintaining a 

successful blue economy, and evaluating the effects of industrialization on these fisheries (e.g., dams, 

fishways, and other hydropower structures) are paramount to the conservation of the species that these 

fisheries encompass. Conventional methods of evaluation (i.e., seining and angling) are costly and time 

consuming. Underwater video monitoring is often the solution because it can capture nearly all the fish that 

traverse the area in question, but this method is also labor intensive. Our goal was to reduce video analysis 

time by automating the fish detection process using two computer vision algorithms: background 

subtraction and YOLO. Upon executing the background subtraction algorithm on the IFW video, we found 

that the optimal parameter combination is threshold 75, radius 10 resulting in a 74.4% TPR and 41.9% FPR 

and reduced the video time by approximately 53.13%. This suggests that background subtraction alone is 

not sufficient to reach performance goals of 90% TPR and 30% FPR. Furthermore, we evaluated the 

generalization capabilities of the machine learning algorithm, YOLO, using a pre-trained model on the IFW 

video. Our results indicate that the model is not robust enough when the dataset in question is not included 

during training. Additionally, we observed challenges in automating fish detection consistently in a dynamic 

environment where light, turbidity, and water velocity are changing over time. In future efforts, if the user 

implements the background subtraction approach, the algorithm needs to be dynamic (i.e., the background 
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model needs to update over time) for optimal results. If the user implements YOLO, then the user needs to 

develop and train the YOLO model on the specific case study dataset. In both cases, the user needs to define 

acceptable tradeoffs between the true positive rate and false positive rate. 

Ongoing work for this project includes labeling and annotating the IFW video dataset in VOC format 

for YOLO training and testing. The dataset will include ultimately subclasses for species identification to 

further reduce video analysis time. 
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