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The West Antarctic Peninsula (WAP) has experienced
significant change over the last 50 years. Using
a 24 year spatial time series collected by the
Palmer Long Term Ecological Research programme,
we assessed long-term patterns in the sea ice,
upper mixed layer depth (MLD) and phytoplankton
productivity. The number of sea ice days steadily
declined from the 1980s until a recent reversal that
began in 2008. Results show regional differences
between the northern and southern regions sampled
during regional ship surveys conducted each austral
summer. In the southern WAP, upper ocean MLD
has shallowed by a factor of 2. Associated with the
shallower mixed layer is enhanced phytoplankton
carbon fixation. In the north, significant interannual
variability resulted in the mixed layer showing
no trended change over time and there was no
significant increase in the phytoplankton productivity.
Associated with the recent increases in sea ice
there has been an increase in the photosynthetic
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efficiency (chlorophyll a-normalized carbon fixation) in the northern and southern regions of
the WAP. We hypothesize the increase in sea ice results in increased micronutrient delivery to
the continental shelf which in turn leads to enhanced photosynthetic performance.

This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula:
status and strategy for progress in a region of rapid change’.

1. Introduction
The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem characterized by
large phytoplankton blooms [1–4]. The high productivity supports a productive food web tightly
coupled to seasonal phytoplankton dynamics suggesting bottom-up control of the ecosystem
[5]. Seasonal phytoplankton activity peaks when solar illumination increases in the summer
when ice has melted and the ocean surface is exposed [6–7]. The physical factors that influence
upper ocean stability during spring are critical to explaining the dynamics of phytoplankton
blooms on the WAP [8–11]. In high ice years, seasonal melt results in a stable water column
that retains phytoplankton in a shallower surface layer, where light conditions are favourable
for phytoplankton growth [9,12,13]. In low ice years, enhanced wind mixing and deeper mixed
layers result in phytoplankton experiencing lower light levels and overall primary productivity is
reduced. The argument for light regulation of phytoplankton growth is also supported by the high
concentrations of macro- [14] and micronutrients [15] in coastal areas and the inner continental
shelf of the WAP; however, low concentrations offshore suggest the possibility for micronutrient
limitation in this region [15].

The WAP is experiencing significant change. It is one of the most rapidly winter warming
regions on Earth, with annual mean atmospheric warming of 3.7°C/century and more than
1°C surface warming ocean during last 50 years [16–21]. Despite the observed changes, current
temperatures remain within natural climate variability for this region and so change cannot
yet be ascribed to anthropogenic driven change [22]. However, the rapid change makes it a
valuable model system to study how future changes might ripple through polar ecosystems
[23]. Associated with atmospheric warming are numerous observations of changes in the sea
ice-, upper ocean heat- and freshwater dynamics [24]. For example, near Palmer Station in the
central WAP region, the annual ice season has declined by 92 days over the last 35 years [24,25];
however, since 2008 there have been rebounds in the amount of winter sea ice around Palmer
Station [26]. The long-term trends in sea ice have been associated with a myriad of effects ranging
from wind-driven circulation to upwelling of warm upper circumpolar deep water (UCDW)
on the continental shelf [27,28]. These processes are influenced by the Southern Annular Mode
(SAM) and the El Niño-Southern Oscillation (ENSO) [25,29]. Changes are believed to underlie
long-term change in the phytoplankton biomass [30]. In the northern WAP, long-term declines
in phytoplankton biomass have been associated with reduced water column stratification due
to more vigorous wind-mixing and increased clouds decreasing the absolute light flux [30]. By
contrast, in the southern WAP, there has been a long-term increase in phytoplankton biomass as
the system transitions to more open water. This is hypothesized to increase the available light [30],
consistent with the overall hypothesis that primary productivity in this region is light limited.
Long-term studies of the dynamics in the upper mixed layer depth (MLD) are, therefore, critical
to understanding dynamics in ecosystem.

Regional decadal studies of the dynamics in the upper mixed layer and its relationship to the
phytoplankton in the Southern Ocean have been limited to local sampling from shore-based field
stations [10,26,31,32]. We use the long-term dataset collected by the PALmer Antarctica Long Term
Ecosystem Research (PAL) programme’s annual ship surveys of coastal regions, the continental
shelf and continental slope. For this study, we assess long-term trends in the upper water column
stability and phytoplankton dynamics. Our results show that the upper MLD in the southern
regions of the WAP has declined significantly over the last two decades. These changes have
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Figure 1. Map of the study sites along the West Antarctic Peninsula sampled by the Palmer Long Term Ecological Research
(LTER) programme. The triangles indicate stations occupied over the 25 year time series. The black lines separate the North and
South regions used in this study. The circles represent laboratory-based stations. In the north is the United States Palmer Station
and in the south the United Kingdom Rothera Station.

significant implications for the ecosystem and have resulted in an increase in biomass-normalized
phytoplankton productivity.

2. Material and methods

(a) Site description
The PAL programme was initiated in 1991 to study how annual sea ice variability structures the
ecology of the West Antarctic Peninsula (WAP). A major component of PAL is an annual ship
survey conducted each austral summer in the month of January. The cruise conducts a series of
cross shelf transects that span a north–south gradient. Over the course of the programme, there
have been adjustments to the sampling grid in response to changes in the sea ice distributions
over time [24]. For this analysis we use a subset of the stations that were sampled across the
full time series. We split the sampling grid into northern (600, 500, 400 lines) and southern
(300, 200 lines) regions following the analysis of Steinberg et al. [33] (figure 1). Seasonal weather
data (air temperature, pressure, wind speed, wind direction, precipitation, sky cover) were
collected at Palmer Station where the time series combined manual observations (1989–2003)
and PALMOS automatic weather station measurements (2003–2017). All PAL data are publicly
available through the Palmer Long Term Ecological Research (LTER) data system (http://pal.
lternet.edu/data).

(b) Data treatment
Sea ice was characterized using Version 2 of the Bootstrap sea ice concentrations from Nimbus-
7 SMMR and DMSP SSM/I that are referenced to daily tie-points consistent with the AMSR-E
Bootstrap algorithm. GSFC Bootstrap time series data (version 2.0) for January 1979 to October
2010, supplemented by preliminary Near-Real-Time-Sea-Ice (NRTSI) data (using the NASA Team
algorithm) for November–December 2010. See Stammerjohn et al. [25] for further details. For all
correlations we used least-squares linear regression.

During the cruise, each station was sampled by a rosette equipped with a SeaBird CTD
system and sampling bottles from 1998 to the present. Prior to 1998 (1993–1998), temperature and
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conductivity data were collected with an internally recording Seabird SEACAT system integrated
into the Bio-Optical Profiling System [34]. The CTD sensors were pre- and post-cruise calibrated
by SeaBird. Standard post-cruise calibration corrections were applied to the data, along with
standard data reduction. Seawater samples were collected at discrete depths with Niskin bottles.
The seawater was immediately filtered (1–2 l) onto 25 mm GF/F filters, wrapped in foil and frozen
at −80°C for fluorometric phytoplankton chlorophyll a (Chl a) analysis (mg Chl a m−3). For this
study, the Chl a concentrations were integrated in the upper 100 m of the water column and then
averaged for the stations within the northern or southern domain. Primary productivity rates
were measured by the uptake of radioactive sodium bicarbonate. In borosilicate flasks, 100 ml
aliquots of the sea water, collected by the CTD at selected depths (at minimum five depths),
were inoculated with nominally 1 µCi of NaH14CO3 per bottle. Integrated rates were calculated
for the upper 100 m of the water column. The borosilicate bottles were incubated for 24 h with
bottles screened to in situ light levels. Given the bottles were not ultraviolet transparent, these
photosynthesis rates are likely to be upper limit estimates. Samples were incubated in an outdoor
deck incubator. After incubation, samples were filtered onto GF/F filters, washed with 10% HCl,
dried and counted in a scintillation counter.

To calculate the seasonal MLD, we used the approach described in Carvalho et al. [35]. For each
profile, surface MLD is estimated by finding the depth of the maximum water column buoyancy
frequency, or max(N2). This method is focused on the water column vertical structure, a quality
index (QI) filter is also applied to identify water column profiles without significant stratification.
For this we used QI (equation (2.1)) developed by Lorbacher et al. [36] to evaluate individual
MLD calculations against water column density and filter out profiles where MLD could not be
resolved. The QI is calculated as

QI = 1 − rmsd(ρk − ρ̄) |(Z1,ZMLD)

rmsd(ρk − ρ̄)|(Z1,1.5×ZMLD)
, (2.1)

where ρk is the density at a given depth (k), Z1 is the first layer near the surface and rmsd()
denotes the standard deviation from the vertical mean (p � 0.01) and 1.05 ρ from Z1 either to the
MLD or 1.5×MLD. This index evaluates the quality of the MLD computation. Using this, MLDs
can be characterized into estimates determined with certainty (QI > 0.8), determined but with
some uncertainty (0.5 < QI < 0.8) or not determined (QI < 0.5). Following the thresholds set by
Lorbacher et al. [36], for the analyses presented in this study, a QI of 0.5 was used to reasonably
warrant a calculation of MLD. This determination of MLD is based on the principle that there
is a near-surface layer characterized by quasi-homogeneous properties and where the standard
deviation of the property within this layer is close to zero. This method does not consider the
strength of stratification, just homogeneity of the surface layer present. Therefore, by definition
the MLD estimate is close to the lower boundary of that vertically uniform layer. The method
has been validated for locations across the Southern Ocean (WAP, Amundsen, Ross Sea) and its
ecological relevance was confirmed against independent chlorophyll data [35]. The QI threshold
flagged 19% of the profiles (161 out of the 825 profiles) as not having a MLD being reliably
determined. To assess the impact on the seasonal MLDs of omitting the profiles, we compared
using all profiles to those with a QI ≥ 0.5 (table 1). Results showed they provided similar MLD
values. Additionally, the correlation slopes between the annual mean MLD for all profiles versus
those with a QI ≥ 0.5 provided highly significant linear relationships. The correlation slopes were
0.89 (p � 0.01) and 1.05 (p � 0.01) for the north and south respectively.

3. Results

(a) Sea ice, mixed layer depth and wind
Sea ice concentrations showed significant interannual variability in the WAP (figure 2a). There
was a positive correlation between the number of sea ice days in the north and south over time
(p � 0.001, R2 = 0.89). On average there are approximately 30 fewer sea ice days in the north
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Table 1. Calculated upper MLDs for all profiles and those profiles with a QI greater than 0.5 for the northern and southern
regions of the LTER study area.

variable dataset mean STD

North sector MLD (all profiles) 34 23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

North sector MLD (QI≥ 0.5) 33 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

South sector MLD (all profiles) 36 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

South sector MLD (QI≥ 0.5) 36 21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compared to the south. The number of sea ice days significantly declined from 1979 through
2008 in both the north (p = 0.01) and south (p = 0.01) with declines of 44 and 41 days respectively
(figure 2a). These changes appeared to be largely related to a later sea ice advance in the north. In
the south the declines in sea ice days were associated with a later seasonal advance and an earlier
retreat in austral spring. Since 2008, sea ice days have increased significantly in the north (p = 0.03)
and south (p = 0.03) almost recovering to the sea concentrations observed in the mid-1980s. In the
north and south the increase was associated with an earlier sea ice advance in autumn.

Seasonally averaged time series of the wind speed and direction at Palmer Station are provided
in figure 3. Wind speed showed significant variability over all seasons with no significant trended
change in any of the seasons given the high interannual variability (figure 3). Wind speeds were
greatest in the fall, winter and spring with seasonally averaged wind velocities ranging between
8 and 16 m s−1. The summer season showed lower variability and magnitude in wind velocity
ranging from 8.8 and 9.2 m s−1 (figure 3c). Wind direction showed fall and spring shifts from SE
to SSW and S, respectively from 1990 to 2009 (figure 3b,d).

There were significant differences between MLDs in the northern and southern regions of
the WAP (figure 2b). In both regions there was significant interannual variability in the MLD
which could increase/decrease by a factor of 2 between years. For the northern (p = 0.06) and
southern (p = 0.03) regions there were negative correlations between the number of sea ice days
and MLD, with large sea ice years associated with shallower seasonal MLDs. There were some
notable differences between the northern and southern regions. In the northern region there
was no significant trend over time in the MLD (p = 0.40), and mixed depths ranged from 17
to 60 m (figure 2b); however, the majority of the years the MLDs ranged between 25 and 45 m
(figure 2b). In contrast, MLDs in the southern region showed declines over 25 years (figure 2b).
In the early 1990s MLDs were typically deeper than 50 m and have since declined by 50% to
25 m. The declining trend in the southern upper MLD over time was highly significant (p � 0.01,
R2 = 0.58) and there was a negative correlation (p = 0.03) between sea ice retreat and MLD.

Seawater density showed declining values (1027 to 1026.4) in the upper MLD in the southern
region over time (figure 4a). The changes in density were largely driven by strong declines
occurring after 2008, which mirrored declining upper ocean salinities and temperatures. The
timing of these changes was coincident with the reversal in sea ice loss (figure 2a). There was
no significant decline in the density for the northern region (figure 4a). The MLDs in the north
(p < 0.01, R2 = 0.28) and south (p � 0.01, R2 = 0.45) were positively correlated with the salinity
in the upper water column (figure 4b). This suggests that sea ice melt was a dominant factor
determining the depth of the upper MLD. Examination of the deep salinities at 100 metres,
showed values were stable whenever the MLD was 60 metres or shallower suggesting that wind-
driven mixing was minimal (figure 4c). The salinities showed declines when the MLD was greater
the 60 m, which represented 13% of the profiles in the north and 10% of the profiles in the south.

(b) Phytoplankton biomass
The northern and southern regions of the WAP are highly productive. Water column integrated
chlorophyll often exceeded 200 mg Chl a m−2 in both the northern and southern regions
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Figure 2. Times series data collected during the Palmer LTER programme for averaged data for the northern (open triangle
and dotted lines) and southern regions (solid black line and solid circles) collected during cruises conducted each January.
(a) The times series of the number of sea ice days for both the northern and southern regions. (b) TheMLD, calculated according
to Carvalho et al. [35], for the northern and southern regions.

(figure 5a). The average Chl a over the WAP full sampling grid was 79 mg m−2. The mean Chl
a in the north was 82 mg Chl a m−2 compared to 71 mg Chl a m−2 in the southern region. The
Chl a stocks that were higher than the mean were heavily weighted to MLDs shallower than
40 metres (figure 5a). There was high interannual variability in the depth-integrated Chl a and
no significant correlation with MLD. Primary productivity also did not show any significant
trends over time in the north. In the southern region where the MLD had declined there was
a significant negative correlation of MLD (p = 0.05) with volumetric primary production. There
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Figure 3. Seasonally averaged wind data collected at the United States Palmer Station since 1990. The data for the winter (a),
spring (b), summer (c) and fall (d) are presented. The right axis provides the seasonal average wind direction (black line) while
the left axis (grey line) shows average wind speed (m s−1).

was a significant increase in the volumetric primary productivity (p = 0.02, R2 = 0.25) for both the
north and south after 2008, with five of the eight years exhibited elevated photosynthetic rates.
The chl-normalized primary productivity (mg C mg Chl a−1 day−1) also showed an increase of
a factor of 4- and 5-fold for the north and south, respectively, after 2007 (figure 5b). The increases
over time were highly significant for both the north (p = 0.02, R2 = 0.24) and the south (p = 0.01,
R2 = 0.28). The increases in Chl a-normalized productivity were coincident with the increases in
sea ice beginning after 2008.

4. Discussion
The northern regions of the peninsula show dramatic declines in sea ice and significant glacial
retreat while the southern peninsula remains a cold dry polar system [24]. The regional differences
in the physical system are mirrored in the biology. Long-term studies have linked changes in
the phytoplankton biomass to changes in sea ice, wind and clouds [30]. This study showed that
phytoplankton biomass increased in southern regions of the WAP between the mid-1980s and the
early 2000s before the recent reversal (figure 2a). It should be noted that all data in this study were
located in the southern region as defined by Montes-Hugo et al. [30]. Phytoplankton increases
in south were hypothesized to reflect increases in light in the ocean associated with declines in
ice cover [30]. Additionally, the total amount of sea ice/glacial melt in the spring helps stabilize
the water with a surface layer of lower salinity water. Saba et al. [5] found that winters that
had significant sea ice were associated with shallower and more stable seasonal upper mixed
depth in the spring. High ice extent facilitates stratification in the following spring and summer
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Figure 4. (a) Time series for the average density in the upper mixed layer. The data for the northern (open triangle and dotted
lines) and southern regions (solid black line and solid circles) collectedduring cruises conducted each January. (b) The correlation
between average salinity in the mixed layer for the MLD. The triangles represent the northern region and southern regions are
represented in solid circles. (c) The relationship between the salinity at 100 m and the upper MLD. There are no trended declines
in the salinities at 100 m until upper MLD are deeper than 60 m.

via two mechanisms, (1) insulation of the water column from high winds through much of the
winter and spring thus preventing the formation of a deep winter mixed layer [11,30] and (2)
providing a larger volume of sea ice melt water that strengthens the density gradient in the
upper water column in the following spring and summer [12]. This was confirmed at Palmer
Station where the summer MLD and the length of the summer growing season were the critical
factors driving the size of the summer phytoplankton blooms [26]. Our regional data support
this interpretation where the low salinity water results in shallower mixed layer, alleviating light
limitation. For this dataset there were no significant increases in Chl a over time; however, in the
southern region there was a significant increase in the phytoplankton volumetric carbon fixation
that has been positively correlated with the concentration Euphausia superba [33]. Thus clarifying
the key environmental factors resulting in enhanced phytoplankton productivity, less so for Chl a,
remains the key need to predicting future trends in the higher trophic levels. Given this our results
suggests the southern WAP food web remains a prototypical short, efficient food chain dominated
by high productivity rates often characterized by larger phytoplankton and zooplankton. The
southern region’s food webs are multivorous, with energy flows more or less equally divided
between large and small producers and consumers [37]. This is in contrast to the northern regions
where the food web is transitioning to a more dissipative microbial food web dominated by small
phytoplankton and grazers [37].
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Figure 5. (a) The histogram between the number observations and depth-integrated chlorophyll a (Chl am−2). The colour
on the bars represents the depth of the depth of the MLD. The solid coloured bars represent the data collected in the southern
region while the stripped open columns represent the northern region in this study. (b) Time series of the water column daily
primary productivity normalized to chlorophyll a (mg C mg Chl a−1 day−1).

The return of the sea ice since 2008 was associated with an increased efficiency of
phytoplankton photosynthesis (figure 5b). The large increases might reflect two processes.
One possibility is that cells reside in shallower mixed layers and thus higher light levels.
Phytoplankton are capable of photoacclimating to the higher light levels by adjusting the amount
of Chl a cell−1. Phytoplankton in the WAP have been shown to actively photoacclimate to changes
in the depth of the mixed layer [9]. In the laboratory, cells have been shown to decrease the
amount Chl a cell−1 by a factor of 2 [38] but given variable wind mixing in these waters,
cell photoacclimation is likely to be dampened. This is consistent with the relatively limited
variability observed in photosynthesis–irradiance curves from this region [39]. Therefore, while

 on May 14, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


10

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170173

........................................................

photoacclimation is present, it is unlikely to account for the factor of 4 increases in Chl a-
normalized productivity. It has been well established that cells overcoming nutrient limitation
will show increased photosynthetic efficiencies [40]. In the WAP, iron concentrations vary widely
across the region [15]. Dissolved and particulate Fe were high in coastal waters (up to 8 and
42 nmol kg−1, respectively). In contrast, very low Fe concentrations (<0.1 nmol kg−1) are seen in
mid- to outer-shelf surface waters, suggesting possible Fe limitation of primary production on
the shelf. Sea ice and dust inputs of Fe appear to be minor, although their relative importance
increased with distance from shore due to the larger near-shore sources [15]. Overall, the
interannual distribution of Fe was most closely correlated to that of meteoric water (glacial
melt and precipitation). Although the Fe concentrations and relative contributions of dissolved
and particulate Fe attributed to meltwater were variable throughout the sampling region [15],
increasing glacial meltwater flux can be expected to increase the delivery of Fe to surface waters
along coastal and across the shelf of the WAP. This combined with recent increases in sea ice,
increasing the importance of this source of iron, is likely to result in increased photosynthetic
performance.

5. Conclusion
The number of sea ice days on the WAP had been steadily declining since the 1980s until a recent
reversal. In the southern WAP, the upper ocean MLD has declined by a factor of 2. Associated with
the shallower MLDs were enhanced phytoplankton carbon fixation rates. In the northern region,
there was significant interannual variability in the MLD and there was no trended change over
time. There was no significant increase in the phytoplankton productivity in the north. Associated
with the recent increases in sea ice over the last decade, there has been an increase in the
photosynthetic efficiency (chlorophyll a-normalized carbon fixation) in the WAP. We hypothesize
the increase in sea ice results in an increase in micronutrients on the continental shelf that in
turn leads to enhanced photosynthetic performance. Results show the close relationship between
the biology and the sea ice on the WAP. Continued temperature changes along the WAP will
result in changes in phytoplankton communities which has significant ramifications for the
food web.
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