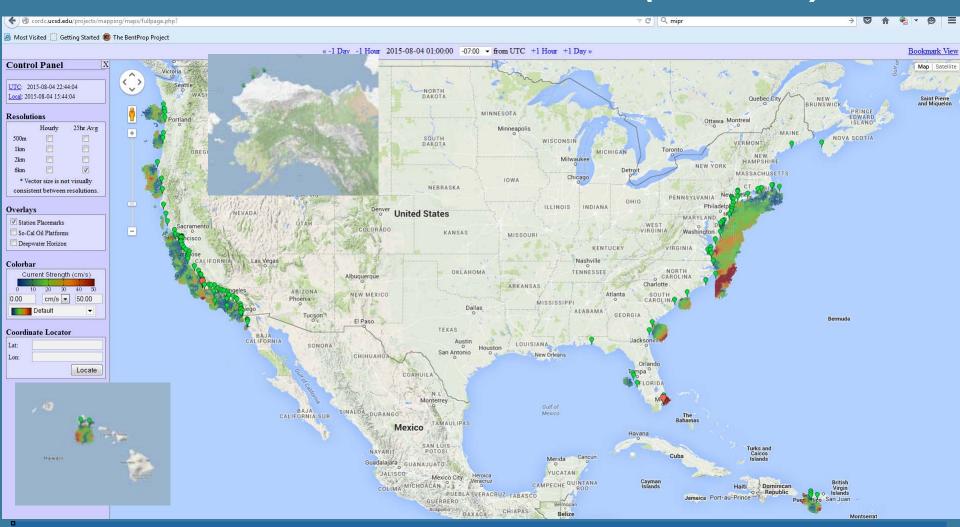
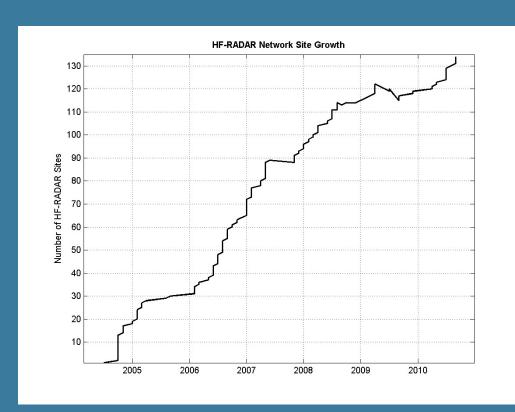

Goal 2: Ensure HFR data is available in a single standardized format in near real-time

Status of the U.S. Radar Network


Lisa Hazard Dr. Eric Terrill **Scripps Institution of Oceanography** 

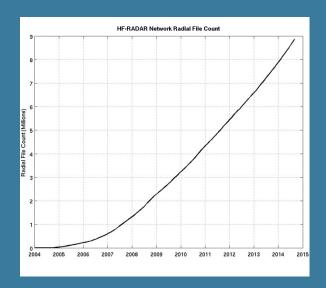


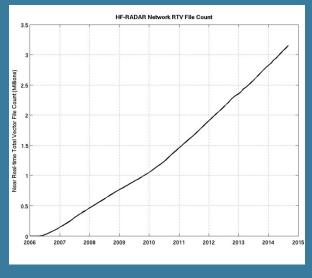
# U.S. IOOS Coastal Component 11 Regional Associations; 17 Federal Agencies




### IOOS HF Radar Network (HFRNet)




Years of Operation: 10 years Participating Organizations: 33 Number of files: approx. 10 million Number of Physical Sites: 138 2009/2015 – National HF Radar Plan


### **U.S. IOOS HFRNet Growth**



#### Scripps

- Backend management and distribution
- Online visualization and interactive display
- Advanced programming interface
- Data Services for integration
- Site Diagnostics and IOOS Metrics

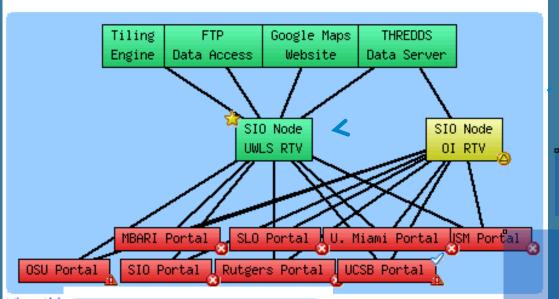


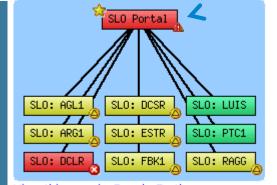




### Network Architecture

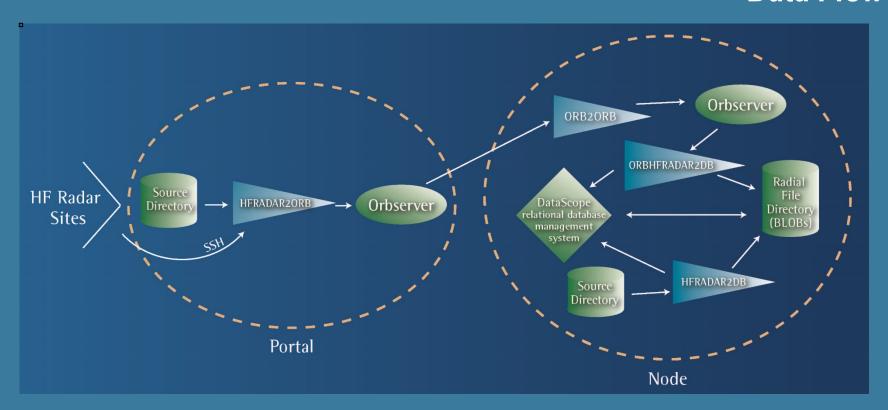
**Data Acquisition** 


Example Node to Site Aggregator communications


Example Site Aggregator to Site communications

**Site** - the individual field installations of HF radar equipment

Portal or Site Aggregator - a local regional operations center which maintains multiple installations

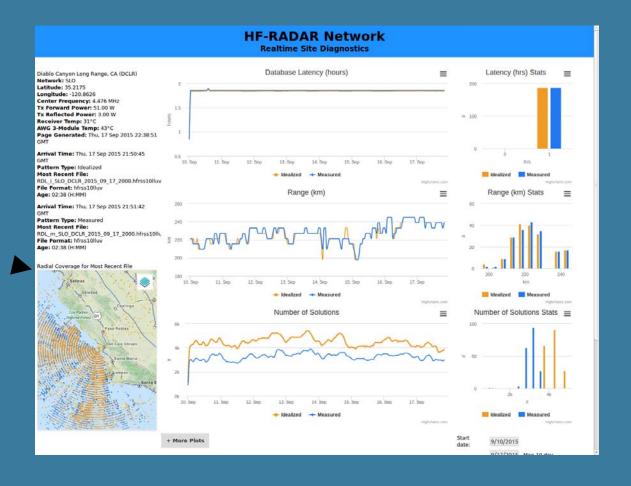

Node - Centralized locations which aggregate data from multiple regions





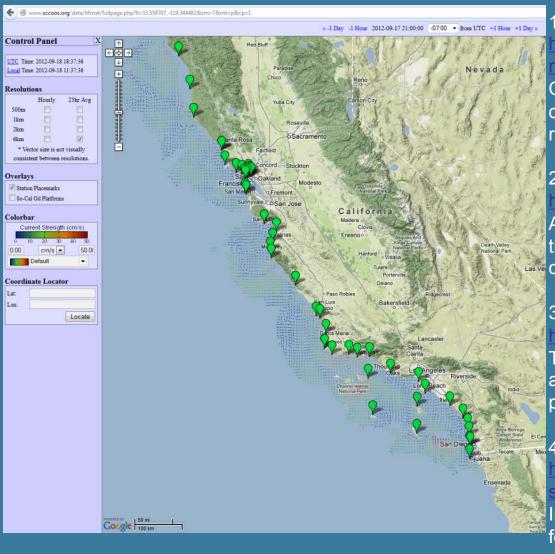


# Data Acquisition Data Flow




- Portals/Site Aggregators server as 'point-of-entry' machines for radial data
- Nodes are typically used as independent data concentrators
- Ingestion of local archive volumes may be achieved through hfradar2db




# Google Maps Interface Radial Diagnostics







### **HF Radar Public Data Availability**



1.) Online Visualization — http://cordc.ucsd.edu/projects/mapping/

<u>maps/fullpage.php</u>

Online visualization of HF radar surface currents with ability to change date, resolution, colorbar, and station information

2.) Web Overlays -

http://cordc.ucsd.edu/projects/mapping/api/ Application programming interface (api) that allows programmers to overlay the currents into any website

3.) THREDDS access -

http://hfrnet.ucsd.edu/thredds/catalog.html
THREDDS service that allows folks to
acquire or used the data via thredds for
processing and/or visualization.

4.) Diagnostics -

http://cordc.ucsd.edu/projects/mapping/ stats/?sta=SDBP&aff=SIO

Individual station statistics and diagnostics for operators



### **METRICS FY15 (Oct '14 - Sept '15)**

The percentage of time NOAA IOOS funded radars are **operational** during a given reporting period.

| Location   | Q1  | Q2  | Q3  | Q4  | FY  |
|------------|-----|-----|-----|-----|-----|
| West Coast | 84% | 81% | 81% | 83% | 81% |
| East Coast | 81% | 77% | 75% | 65% | 74% |
| All        | 83% | 79% | 78% | 75% | 78% |

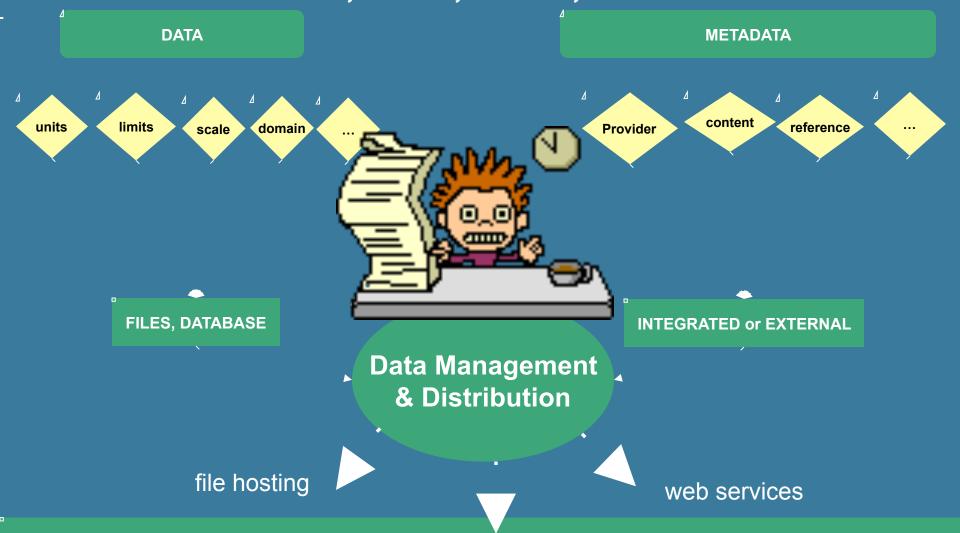
FY15

| Location   | Q1  | Q2  | Q3  | Q4  | FY  |  |
|------------|-----|-----|-----|-----|-----|--|
| West Coast | 77% | 76% | 76% | 78% | 74% |  |
| East Coast | 82% | 68% | 71% | 72% | 71% |  |
| All        | 79% | 73% | 74% | 76% | 73% |  |

FY14

Pick a year: 2015 2014 2013 2012

West Coast Stations JUMP TO: East Coast & GOM Stations


Click on column to sort

| West Coast   |         |             |               |           |                       |                       |                       |                       |                       |                       |                       |                      |                      |                      |                      |                      |                        |
|--------------|---------|-------------|---------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|
| Station      | Network | Latitude    | Longitude     | Frequency | 2014-10               | 2014-11               | 2014-12               | 2015-01               | 2015-02               | 2015-03               | 2015-04               | 2015-05              | 2015-06              | 2015-07              | 2015-08              | 2015-09              | TOTAL                  |
| SDCI<br>RDLi | SIO     | 32.41406670 | -117.24373330 | 24.800262 |                       |                       |                       | 77.96 %<br>580 / 744  | 96.43 %<br>648 / 672  | 100.00 %<br>744 / 744 | 100.00 %<br>720 / 720 | 97.31 %<br>724 / 744 | 97.22 %<br>700 / 720 | 97.31 %<br>724 / 744 | 96.24 %<br>716 / 744 | 69.27 %<br>266 / 384 | 93.66 %<br>5822 / 6216 |
| SDCI<br>RDLm | SIO     | 32.41406670 | -117.24373330 | 24.800262 |                       |                       |                       | 2.02 %<br>15 / 744    |                       |                       |                       |                      |                      |                      |                      |                      | 0.24 %<br>15 / 6216    |
| SDBP<br>RDLi | SIO     | 32.53591670 | -117.12226670 | 25.799804 | 91.80 %<br>683 / 744  | 74.44 %<br>536 / 720  | 91.94 %<br>684 / 744  | 95.56 %<br>711 / 744  | 81.70 %<br>549 / 672  | 74.06 %<br>551 / 744  | 58.75 %<br>423 / 720  | 93.41 %<br>695 / 744 | 95.83 %<br>690 / 720 | 91.40 %<br>680 / 744 | 89.78 %<br>668 / 744 | 83.07 %<br>319 / 384 | 85.34 %<br>7189 / 8424 |
| SDBP<br>RDLm | SIO     | 32.53591670 | -117.12226670 | 25.799804 | 95.70 %<br>712 / 744  | 90.69 %<br>653 / 720  | 99.19 %<br>738 / 744  | 100.00 %<br>744 / 744 | 96.73 %<br>650 / 672  | 76.75 %<br>571 / 744  | 75.42 %<br>543 / 720  | 96.24 %<br>716 / 744 | 87.36 %<br>629 / 720 | 92.47 %<br>688 / 744 | 93.55 %<br>696 / 744 | 73.44 %<br>282 / 384 | 90.48 %<br>7622 / 8424 |
| SDPL<br>RDLi | SIO     | 32.66583330 | -117.23958330 | 24.500000 | 99.19 %<br>738 / 744  | 98.75 %<br>711 / 720  | 95.70 %<br>712 / 744  | 98.12 %<br>730 / 744  | 100.00 %<br>672 / 672 | 98.79 %<br>735 / 744  | 99.44 %<br>716 / 720  | 97.18 %<br>723 / 744 | 97.22 %<br>700 / 720 | 96.64 %<br>719 / 744 | 96.77 %<br>720 / 744 | 82.29 %<br>316 / 384 | 97.25 %<br>8192 / 8424 |
| SDPL<br>RDLm | SIO     | 32.66583330 | -117.23958330 | 24.500000 | 98.92 %<br>736 / 744  | 97.92 %<br>705 / 720  | 95.56 %<br>711 / 744  | 97.72 %<br>727 / 744  | 98.36 %<br>661 / 672  | 98.25 %<br>731 / 744  | 99.31 %<br>715 / 720  | 96.91 %<br>721 / 744 | 97.22 %<br>700 / 720 | 96.51 %<br>718 / 744 | 96.37 %<br>717 / 744 | 79.95 %<br>307 / 384 | 96.74 %<br>8149 / 8424 |
| SDWW<br>RDLi | SIO     | 32.67991670 | -117.24741670 | 25.400000 | 100.00 %<br>744 / 744 | 100.00 %<br>720 / 720 | 100.00 %<br>744 / 744 | 100.00 %<br>744 / 744 | 100.00 %<br>672 / 672 | 99.73 %<br>742 / 744  | 100.00 %<br>720 / 720 | 97.31 %<br>724 / 744 | 97.22 %<br>700 / 720 | 94.89 %<br>706 / 744 | 97.45 %<br>725 / 744 | 87.76 %<br>337 / 384 | 98.27 %<br>8278 / 8424 |
| SDSL<br>RDLi | SIO     | 32.87058330 | -117.25253330 | 5.200000  | 42.20 %<br>314 / 744  | 98.06 %<br>706 / 720  | 2.28 %<br>17 / 744    |                       | 71.88 %<br>483 / 672  | 94.62 %<br>704 / 744  | 100.00 %<br>720 / 720 | 93.41 %<br>695 / 744 | 84.44 %<br>608 / 720 | 88.04 %<br>655 / 744 | 94.76 %<br>705 / 744 | 87.24 %<br>335 / 384 | 70.54 %<br>5942 / 8424 |
| SDSL<br>RDLm | SIO     | 32.87058330 | -117.25253330 | 5.200000  | 6.18 %<br>46 / 744    | 92.08 %<br>663 / 720  | 2.28 %<br>17 / 744    |                       |                       |                       | 50.97 %<br>367 / 720  | 71.37 %<br>531 / 744 | 78.19 %<br>563 / 720 | 64.11 %<br>477 / 744 | 85.08 %<br>633 / 744 | 75.52 %<br>290 / 384 | 42.58 %<br>3587 / 8424 |
| SDSC<br>RDLi | SIO     | 32.91775000 | -118.48690000 | 5.234951  | 100.00 %<br>744 / 744 | 99.86 %<br>719 / 720  | 97.45 %<br>725 / 744  | 83.60 %<br>622 / 744  | 100.00 %<br>672 / 672 | 98.79 %<br>735 / 744  | 100.00 %<br>720 / 720 | 97.31 %<br>724 / 744 | 96.81 %<br>697 / 720 | 94.35 %<br>702 / 744 | 97.31 %<br>724 / 744 | 88.54 %<br>340 / 384 | 96.44 %<br>8124 / 8424 |
| SDSE<br>RDLi | SIO     | 33.02450000 | -117.28610000 | 24.799804 | 100.00 %<br>744 / 744 | 97.78 %<br>704 / 720  | 100.00 %<br>744 / 744 | 100.00 %<br>744 / 744 | 100.00 %<br>672 / 672 | 95.43 %<br>710 / 744  | 96.53 %<br>695 / 720  | 96.91 %<br>721 / 744 | 96.81 %<br>697 / 720 | 84.81 %<br>631 / 744 | 68.41 %<br>509 / 744 | 69.27 %<br>266 / 384 | 93.03 %<br>7837 / 8424 |
| SNI1<br>RDLi | UCSB    | 33.28050000 | -119.52245000 | 13.439650 | 99.87 %<br>743 / 744  | 92.64 %<br>667 / 720  | 31.45 %<br>234 / 744  |                       |                       |                       | 97.50 %<br>702 / 720  | 97.45 %<br>725 / 744 | 94.03 %<br>677 / 720 | 97.45 %<br>725 / 744 | 12.63 %<br>94 / 744  |                      | 54.21 %<br>4567 / 8424 |
| SNI1<br>RDLm | UCSB    | 33.28050000 | -119.52245000 | 13.439650 | 99.87 %<br>743 / 744  | 92.64 %<br>667 / 720  | 31.45 %<br>234 / 744  |                       |                       |                       | 97.50 %<br>702 / 720  | 97.45 %<br>725 / 744 | 94.03 %<br>677 / 720 | 97.45 %<br>725 / 744 | 12.63 %<br>94 / 744  |                      | 54.21 %<br>4567 / 8424 |



An HF radar derived data file where the number of *Observed* radial solutions meets or exceeds a nominal number of radial solutions (X) and the file was reported within (Y) hours of the observation.

#### Data, DAta, DATA



#### **APPLICATIONS AND DECISION MAKING**

Management Decision Impacts: Is change/impact as a result of the management decision? External Human Influences: Are they present, Are they avoidable, Are they external to region? Natural Variability: Are observed changes caused by natural variability? E.g. – climate change?

- Standard for Gridded Velocity Format Network Common Data Format (NetCDF) format http://www.unidata.ucar.edu/software/netcdf/
- Standard Metadata Naming Conventions for data– Climate Forecast Interoperability http://cfconventions.org/
- Standard Metadata for Dataset Discovery
  Attribute Convention for Dataset Discovery (ACDD)

  <a href="http://wiki.esipfed.org/index.php/Attribute\_Convention\_for\_Data\_Discovery">http://wiki.esipfed.org/index.php/Attribute\_Convention\_for\_Data\_Discovery</a>

#### Example can be found at:

http://www.cordc.ucsd.edu/projects/mapping/documents/HFRNet\_RTV-NetCDF.pdf

Standard Distribution Service –
 THREDDS Data Server (TDS)
 http://www.unidata.ucar.edu/software/thredds/current/tds/



• Standard for Gridded Velocity Format – Network Common Data Format (NetCDF) format http://www.unidata.ucar.edu/software/netcdf/

Definition: NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.

What is it: Software package to transform your data into a format that has defined tags

Why is it useful: your data can be read by supporting applications without having to translate

```
netcdf foo {
                // example netCDF specification in CDL
dimensions:
lat = 10, lon = 5, time = unlimited;
variables:
  int
          lat(lat), lon(lon), time(time);
  float
          z(time, lat, lon), t(time, lat, lon);
  double p(time, lat, lon);
          rh(time, lat, lon);
  int
  lat:units = "degrees north";
  lon:units = "degrees east";
  time:units = "seconds":
  z:units = "meters";
  z:valid range = 0., 5000.;
 p: FillValue = -9999.;
  rh: FillValue = -1;
data:
        = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;
        = -140, -118, -96, -84, -52;
```



• Standard Metadata Naming Conventions for data– Climate Forecast Interoperability <a href="http://cfconventions.org/">http://cfconventions.org/</a>

What is it: Naming conventions for variables. Provides detailed standardized description for each variable

Why is it useful: Facilitates building applications for extraction, analysis and display

```
surface eastward sea water velocity
```

The surface called "surface" means the lower boundary of the atmosphere. "Water" means water in all phases, including frozen i.e. ice and snow. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward).

m s-1

```
varid_v = netcdf.defVar( ncid, 'v', 'float', [dimid_range dimid_bearing dimid_t] );
netcdf.defVarDeflate(ncid, varid_v, true, true, 6);
netcdf.putAtt( ncid, varid_v, 'valid_range', single( [-le3 le3] ));
netcdf.putAtt( ncid, varid_v, 'standard_name', 'surface_northward_sea_water_velocity' );
netcdf.putAtt( ncid, varid_v, 'units', 'cm s-l' );
netcdf.putAtt( ncid, varid_v, 'coordinates', 'lon lat' );
```

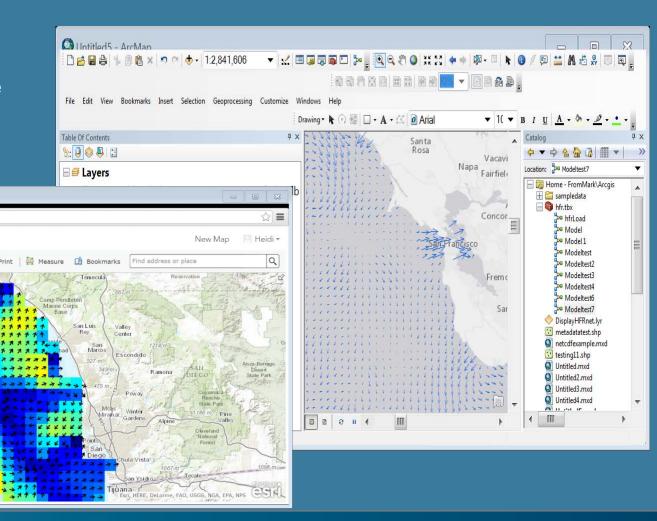


Standard Metadata for Dataset Discovery
 http://wiki.esipfed.org/index.php/Attribute\_Convention\_for\_Data\_Discovery

What is it: Dataset level metadata

Descriptive information about the data

Why is it useful: Dataset discovery – making it easier for users to find your data Crosswalk metadata standards (e.g. ISO 19115, FGDC, Dublin Core)


| Global Attributes  |                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highly Recommended |                                                                                                                                                                                                                                                                                                                                 |
| Attribute          | Description                                                                                                                                                                                                                                                                                                                     |
|                    | A short phrase or sentence describing the dataset. In many discovery systems, the title will be displayed in the results list from a search, and therefore should be human readable and reasonable to display in a list of such names. This attribute is also recommended by the NetCDF Users Guide & and the CF conventions &. |
| summary            | A paragraph describing the dataset, analogous to an abstract for a paper.                                                                                                                                                                                                                                                       |
| •                  | A comma-separated list of key words and/or phrases. Keywords may be common words or phrases, terms from a controlled vocabulary (GCMD & is often used), or URIs for terms from a controlled vocabulary (see also "keywords_vocabulary" attribute).                                                                              |
| Conventions        | A comma-separated list of the conventions that are followed by the dataset. For files that follow this version of ACDD, include the string 'ACDD-1.3'. (This attribute is described in the NetCDF Users Guide \$\mathbb{G}\$.)                                                                                                  |



# Data Distribution THREDDS and ArcGIS

- Migrating ArcMap users from FTP and shapefiles to direct access with TDS
- ArcGIS Online can also access data through a TDS
- Produce data in the fewest file formats as possible to reduce potential (de)synchronization issues

← → C www.arcgis.com/home/webmap/viewer.html?useExisting=1





Esri.com . ArcGIS Marketplace . Help . Terms of Use . Privacy . Contact Esri . Report Abuse

ArcGIS - My Map - Google Chrome

ArcGIS - My Map

▲ ₩ HFRnet: HF Radar National

 surface sea water velocity

Network Production TDS

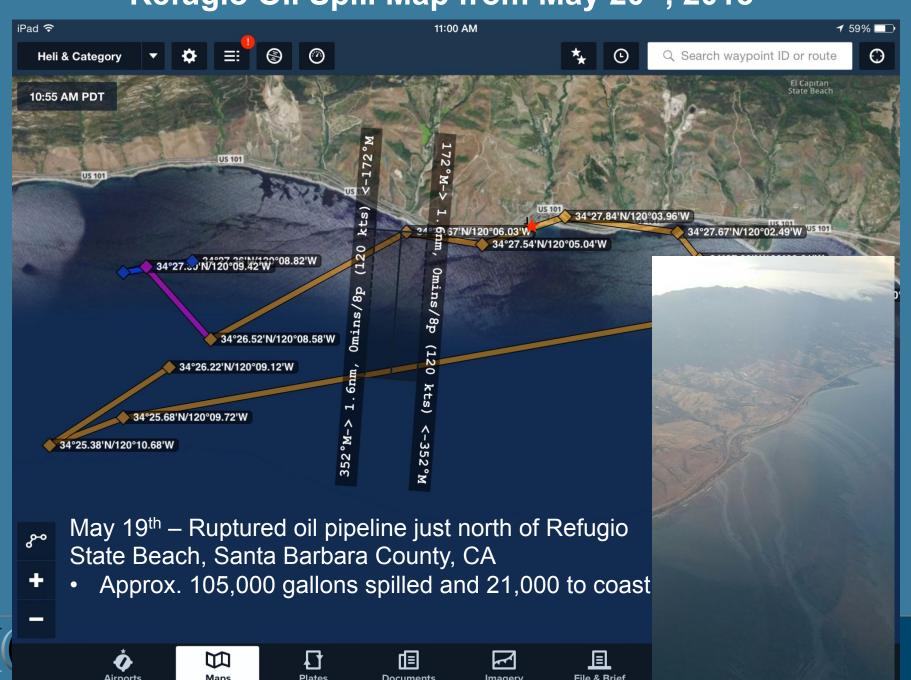
latitudinal dilution of

longitudinal dilution of

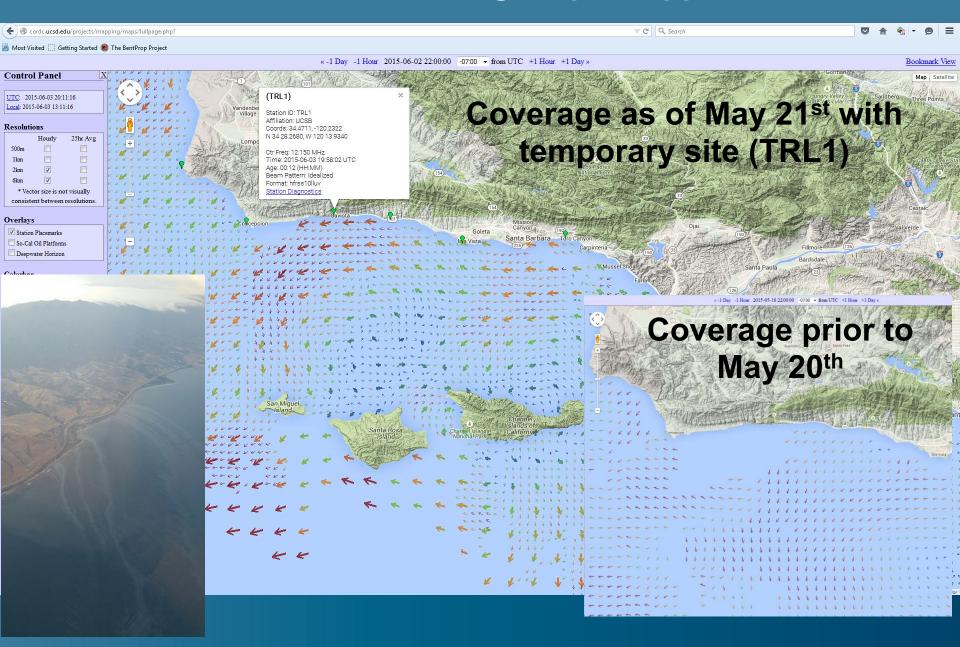
surface northward sea

water velocity surface eastward sea

Topographic


Contents

#### **HF Radar Public Data Distribution and Benefits**

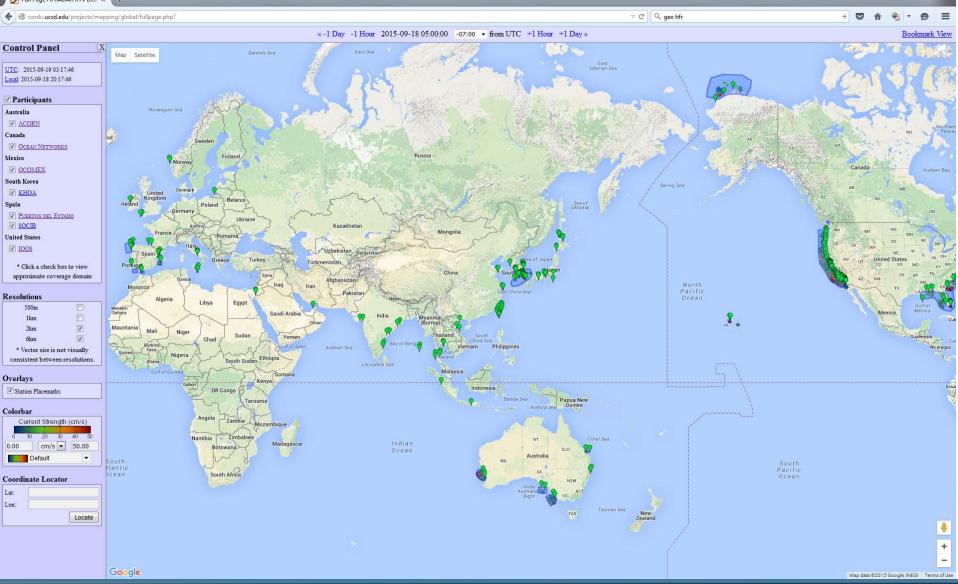

- Search and Rescue U.S. Coast Guard Search and Rescue Optimal Planning System (SAROPS)
- 2. Oil Spill Response
  - California Office of Prevention and Response (OSPR)
  - NOAA Office of Response and Restoration (OR&R) Emergency Response
     Division (ERD) General NOAA Operational Modeling Environment (GNOME)
- 3. Assessment OR&R Assessment and Restoration Division (ARD) Environmental Response Management Application (ERMA)
- Weather NOAA National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS-II) HFR Rollout Weather Forecast Offices (WFO) – Boston and Miami, July 6, 2015



#### Refugio Oil Spill Map from May 20th, 2015



# SCCOOS HF Radar Coverage with Temporary Installation for Refugio Spill support




# High Frequency Radar Network (HFRNet) Global Partnerships





# High Frequency Radar Network (HFRNet) Global Partnerships





## High Frequency Radar Network (HFRNet) Global Partnerships

#### Questions?

**Discussions:** 

Data Distribution: THREDDS Data Server; ftp; http; https file modification times are preserved during the file copy.

Data Availability: account for reprocessing – U.S. network 25hrs

Time: UTC



## Thank You

