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Analytical and numerical models of circulation over submarine canyons are
presented where parameters such as stratification and canyon geometric scale
closely mimic the Mackenzie Canyon located in the Beaufort Sea. The analytical
model represents the linear, inviscid dynamics that take place during a geostrophic
adjustment. The numerical model contains a full representation of the Navier-Stokes
equations and is forced by a wind stress. Comparisons between the analytical and
numerical simulations show that both models accurately represent simple coastal
flow patterns in the vicinity of a coastal canyon.

Numerical simulations of a wind forced upwelling event on a shelf with a
canyon and a shelf without a canyon differ drastically. For the shelf without a
canyon, upwelled waters are confined to within 5-6 km of the coast and a uniform
along-shore coastal jet develops within 3 days of steady forcing. For the shelf with a
canyon, vertical velocities are much stronger within the canyon, and there is an

isolated region of upwelled waters that is confined to the coast along the axis of the
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canyon. Also, onshore trans ort is five times greater than offshore transport along
the axis of the canyon indicating that canyons facilitate cross-shelf mixing during
wind-forced upwelling events.

Simulations of the coastal ocean's response to passing frontal systems reach
an adjusted state after 5 days of continuous forcing. Alongshore transport
dominates the system with a minimal amount of net on shore or off shore transport
taking place in either of the model runs. Upon cessation of the winds, near-inertial

oscillations take place in both simulations.
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1 Introduction

The Arctic Ocean is a key factor in stabilizing the earth's global climate
[Aagaard and Carmack, 1994]. The permanent ice cover there facilitates a delicate
balance between stratified layers in the ocean below. The balance is between a very
cold and fairly fresh surface layer, a cold and salty halocline and a warm and dense
layer of sea water lying below [Aagaard et al., 1981]. The continental shelves of the
Arctic Ocean comprise more than 30% of its total area. These areas supply the
necessary ingredients required to sustain present thermohaline properties. Warm,
fresh water runoff from rivers generally stays confined on the shelves, due to the
nature of buoyant plume outflows on a rotating earth. In the summer season strong
stratification is usually observed on these shelves. Upon the onset of the winter
season, the surface temperatures plummet and ice forms. During the formation of
ice saltis rejected and a downward flow of dense water is created [Aagaard and
Carmack, 1989]. The sinking of dense water particles continues until they reach an
equilibrium depth where the ambient density is the same. This equilibrium depth
coincides with the Arctic halocline, which resides between 50 and 150 meters depth.
The presence of the cold Arctic Halocline insulates the surface ice cover from a large
pool of warm Atlantic water.

The amount of dense water formed is directly proportional to the salinity of
the surface waters that is being frozen. The average salinity of sea ice is about 5 ppt;

therefore, if pure river runoff, with salinity equal to zero, is frozen there will be no



downward flux of dense water. A necessary condition for the maintenance of
the Arctic halocline is that the shelf water be sufficiently saline to create a strong

downward flux of dense brine.
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Figure 1 Map of the Arctic Ocean, the Mackenzie Bay Area is
outlined in red.



1.1 Setting

The Mackenzie Bay is a shelf region just north of the Canadian-Alaskan
border and immediately adjacent to the deep Arctic Ocean; see figure 1 . This shelf
region as defined by the 100-m isobath is 100-150 km wide.

The topography consists of a uniformly sloping shelf with a mean depth of 35 m and
slope of 0.1 %. The Mackenzie Canyon intersects this relatively fiat shelf; see figure
2 for the bathymetry of this area, a deep U-shaped canyon with a width of 65 km and
length of 90 km. Mackenzie Canyon is wide compared to the internal deformation
radius, averaging 6 km over this region [Carmack et al,, 1989]. Another prominent
feature of this shelf is the inflow of fresh water from the 3 Mackenzie River. The
Mackenzie river is the fourth largest river in the Arctic and the 11th largest in the
world. Its peak discharge occurs in the summer season when maximum volume
fluxes reach 26,000 m3/s. Its annual volume flux is approximately 380 km3
[Macdonald, 1989]. The regional surface circulation in this area is dominated by the
Beaufort Gyre, a large scale, wind-driven, anti-cyclonic current located seaward of
the shelf break. Below the surface the Beaufort Undercurrent, a subsurface eastward
flow, has been observed near the shelf break.

In the ice-free summer season the shelf typically exhibits a very strong
seasonal halocine with a surface layer comprised of a warm and relatively fresh
layer present to a depth of 10 m. Below the seasonal halocline the temperature
drops suddenly and the salinity increases monotonically until about 50m depth

where the temperature minimum is reached. As winter approaches, surface



stratification progressively weakens as river inflow decreases, wind mixing

increases and ice forms.
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Figure 2 Bathymetric contours for the Mackenzie Bay study area.

The shelf stratification is disturbed by periodic wind forced events over the
shelf. Winds from the east-north-east drive a surface Ekman layer offshore, figure 3,
effectively piling up water offshore and creating a sea level slope with higher sea
levels offshore. This pressure gradient in the onshore direction forces a subsurface,

onshore flow resulting in vertically displaced isopycnals on the shelf and upwelling



near the coast. These upwelling events seem to be magnified around the region of
the Mackenzie canyon [Kulikov, 1998]. In the canyon isopyncal displacements of
over 600m have been observed, indicating that water has been drawn into the
canyon from a depth offshore of over 650m. This large-scale displacement of
isopycnals suggests that large volumes of dense and nutrient rich waters are being
mixed with relatively fresh surface water in the vicinity of the canyon.

Macdonald et al. [1987] presents hydrographic data collected in 1975, a year
with much open water. The observed new productivity based on nutrient budgets
was low compared to temperate coastal waters, but it was sufficient to supply a
significant portion of the nutrients found in the upper halocline over the entire
Arctic Ocean. In 1974, a year when the ice remained close to shore, the primary
productivity was reduced by 30%. Their observations suggest that the wind is
strongly correlated with cross shelf transport in this 5 region. From a large-scale
point of view, coastal upwelling events may also be a key factor in understanding
how the continental shelves of the Arctic Ocean maintain the permanent halocline
and thus insolate the overlying ice cover from the warm Atlantic layer below.

A further consequence of wind-forced upwelling over the Mackenzie canyon
occurs when the winds relax or rotate to a non-upwelling favorable direction. The
upwelled waters now over the shelf are denser than the surrounding waters and
therefore sink. In the vicinity of the submarine canyon, vertical excursions caused
by the large displacements of the isopycnals act in such a way as to force a coastal-
trapped wave [Brink, 1991; Mysak, 1980]. Kulikov and Carmack [1998] observed this

phenomenon by calculating the spectral phase lags of maximum coherence for four



current meters located to the east of the Mackenzie Canyon. They conclude that an
internal Kelvin wave is generated within Mackenzie Canyon after the cessation of
upwelling favorable winds. The observed phase speed of this wave is 0.6 m/s and its
direction is in opposition to the wind-driven flow field. Similar waves were
generated in the vicinity of a submarine canyon after the passage of Hurricane
Andrew over the Mississippi Canyon [Keen and Glenn, 1999].

Itis clear that the dynamics observed in the Mackenzie Bay region are
extremely complicated by factors such as ice cover, changing weather and

complicated geometries associated with topography and coastline. Because of these

Direction of
Ekman Transport |

Ekman Spiral

Adapted from Thurman, Harold ¥. Essentials of Oceanography, Sth ed.
Prentice-Hall, Inc., 1996.

Figure 3 Cartoon of Ekman Surface layer transport.



complications, a numerical simulation of a wind forced upwelling event in the
Mackenzie Bay while paying close attention to the effects of canyon topography may
help elucidate the underlying dynamics in this region. The present state of ocean
model development allows for a fairly exact simulation of all the present dynamical
features observed in the Mackenzie Bay region.

A complex bathymetry, coastline and ambient current regime may be specified as
well as realistic winds with which to force an upwelling event, but the cost of such a
model run is the complexity associated with interpreting the results. Numerical
modeling of realistic settings requires detailed knowledge of boundary conditions,
interior horizontal and vertical viscosities as well as a large resource of computer
memory and time.

Faced with the above difficulties | have decided to simplify the setting
present in the Mackenzie Bay, while maintaining many of the relevant dynamical
scales which should affect the specific processes | am interested in modeling. Those
are, wind forced upwelling over a continental slope and submarine canyon and
internal wave generation in the vicinity of submarine canyons. Instead of
considering a very complex Arctic region, [ have considered two different regimes.
These are a flat shelf and slope, and a flat shelf and slope intersected by a canyon.
The remainder of the paper of organized in sections, with the next section providing
a brief literature review on the subject of submarine canyons. Section 3 presents an
analytical model of a geostrophic adjustment over a submarine canyon. Section 4
describes the numerical model and the parameter choices made for this study.

Section 5 presents a test of the choice of boundary conditions and then the



simulated circulation for a shelf with a canyon and a shelf without one. Section 6
comments on how these highly idealized model simulations may provide insight on

the dynamics of wind-driven alongshore flow interactions with submarine canyons.



2 Literature Review

Submarine canyons are characteristic features of many continental margins
around the world. They are locations where flow fields are altered due to the
presence of topographic irregularities. As early as 1906 oceanographers noticed
how dense waters seem to follow bathymetric features,

" ... the currents have a tendency to follow the deepest channels of the sea

bottom. Where the moving water meets a projection on the sea bottom, it is

deflected towards the sides, and if there be openings the waters will follow

the lines of least resistance," [Nansen, 1906).

Unfortunately, physical oceanographers have not studied submarine canyons
as intensely as other coastal phenomena. The reasons for this lie in the inherent
difficulties associated with deploying instruments in areas with steeply sloping side
walls; and the fact that canyons are more heavily fished than other coastal areas due
to the high productivity found there [MacDonald et al., 1987].

Alarge quantity of observational evidence, mostly in the geological and
biological fields, show that canyons are places where water is exchanged between
the coastal zone and the open ocean [Noble and Butman, 1989; Shepard et al.,, 1979].
Coastal waters are generally confined to the continental shelf because of the
presence of fronts at the shelf edge associated with energetic currents flowing along
the isobaths which represent true physical barriers to the offshore transport of
properties [Chapman, 1986). Canyons, by disrupting the mean along-slope flow
pattern, seem to be capable of producing significant motions across the slope

[Aagaard and Roach, 1990). This enhanced cross-slope transport of properties over

canyons may be of particular importance for the renewal of coastal waters.
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Canyons are not only significant because of the existing shelf/slope
exchanges, but also because of the vertical motions steered by their steep
topography and by the mesoscale eddies developing in their vicinity [Madron,
1994]. Hence, vertical velocity is a key variable for the dynamics of canyon
circulation. It is also a crucial parameter to study the interdisciplinary effects of the
circulation since it determines the vertical exchange between nutrient-rich
subsurface waters and the surface euphotic layer. The detailed description, from
hydrographic and mooring data, of the three-dimensional circulation in the Astoria
Canyon (U.S. West Coast) in Hickey [1997] emphasizes the role of wind forcing in the
amplification of these vertical motions in the canyon. She reports estimates of
vertical velocity as large as 50 m per day (upward) and 90 m per day (downward)
within the canyon and mean currents of 10 cm/s directed onshore at the rim of the
canyon. Significant correlation (r=0.6) was found between along-shelf wind and
vertical velocities. Hickey observed that as the wind builds up, the mean current,
flowing with the coast on its left, is undisturbed at the surface, but a cyclonic eddy
appears in the canyon, likely spun up by potential vorticity conservation. At the
climax of the wind, this eddy gives way to a massive onshore flow in the canyon with
the surface currents still undisturbed. As the wind relaxes, the canyon eddy forms
again and the surface currents are turned towards the coast driven by the cross-
shore pressure gradient. In this study, Hickey also observes an asymmetric
displacement of isopycnals over the canyon due to vertical motions induced by the

canyon wall interactions with the overlying geostrophic flows.
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One of the earliest accounts of a persistent feature located in the vicinity of a
submarine canyon which disrupted local flows was made by Freeland and Denman,
[1982]. Their data clearly show that upwelling can take place in the absence of local
wind forcing, which led them to coin the term "topographic upwelling" as it
occurred in the head of Spur canyon, one of the branches of Juan de Fuca Canyon on
the north-west coast of the US. Their observations suggest that the geostrophic flow
above the canyon crosses isobaths, in the same direction as the large-scale flow,
thereby imposing an along-canyon pressure gradient. They argue that the Coriolis
force cannot balance the pressure gradient as the cross canyon velocity goes to zero
at the canyon walls. From an energetic argument they conclude that the pressure is
enough to balance the increase of potential energy as waters are upwelled from 450
m deep to the surface. Their analytical model of a non-linear steady flow, neglecting
the along-canyon Coriolis force, portrayed the first picture of how ageostrophic
pressure-driven flow acts in a canyon. Although very slow (typically 1 cm/s) this
kind of flow can be enough to provide a large supply of nutrients to the surface
waters.

Since that publication, other accounts of sub-tidal along-canyon flows, driven
by pressure gradients, have been reported. An example is found in Lydonia Canyon
(US East Coast) [Noble and Butman, 1989]. This particular study decomposes the
flow into empirical orthogonal functions, an analysis technique that revealed two
significant modes. An "along-shelf" mode, very similar to the observations described
by Freeland and Denman [1982], where along-shore geostrophic flow drives waters

along the shelf due to an alongshore pressure gradient. And an "exchange-mode"
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characterized by an onshore flow at surface and offshore flow out of the canyon. The
dominant mode is the "along-shelf" in particular at low frequencies (less than 0.2
cpd) while at higher frequencies the exchange mode is dominant. These frequencies
happen to make up the bulk of the wind spectrum.

Noble and Butman conducted further analysis on the dynamics present
within Lydonia Canyon by computing force balances above the canyon and within
the canyon. They find that the flow over the shelf is primarily geostrophic, with the
pressure gradient balancing the along-shelf flow. Within the canyon, the geostrophic
force balance is disrupted because the cross-canyon currents are blocked by the
walls of the canyon. Near the rim of the canyon, turbulent Reynolds stresses, the
Coriolis force and the acceleration terms can balance the imposed pressure
gradient. The turbulent stresses arise due to the large tidal currents present in this
region. Deeper within the canyon, the Coriolis force is found to be less important,
and baroclinic adjustments begin to become an important factor in the momentum
balance.

These findings agree with those of Signorini et al. [1997] where observations
and model results show that the along-canyon momentum balance in Barrow
Canyon is ageostrophic, since the temporal Rossby number is of the order of 1. In
this study, the cross-canyon momentum balance is also analyzed, and the
researchers found that the barotropic component of the cross-canyon momentum
balance is geostrophic, whereas the baroclinic component is ageostrophic. For the
baroclinic component of the flow, the pressure gradient is balanced by the

acceleration and non-linear terms in the momentum balance as well as the Coriolis
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force. The imbalance between the baroclinic and barotropic components of the flow
generate secondary flows with a magnitude that is between 5-15% of the along-
canyon velocities. These secondary flows, although weak; influence the structure of
the along-canyon flow by changing the horizontal and vertical distributions of
momentum.

Another study of interest is that of Hunkins [1988] in Baltimore Canyon. At
depths above the rim of the canyon, 100 m, a very clear cross canyon flow to the
southwest is driven by a surface pressure gradient. Below this surface layer, flow is
down-canyon at the head of the canyon (i.e. in the sense expected due to the surface
pressure gradient). Towards the mouth of the canyon and at depths of 600m the
flow is cyclonic, moving up-canyon on the northern flanks and down-canyon on the
southern flank. Therefore, the general pattern of flow derived from these
measurements is that of an along-shore flow over the canyon while within the
canyon the flow is dominantly cross-shore with its direction given by the pressure
gradient in geostrophic balance with the surface flow. These flows can be
responsible for steady upwelling, in the absence of local wind forcing.

Early modeling experiments showed that unstratified flows usually followed
isobaths, even at the surface. This is true of analytical and geostrophic adjustment
models by Klinck, [1989; 1988] and Chen and Allen, [1996]. Primitive equation
models with adequate stratification are able reproduce the ageostrophic flow
observed and described above. Allen [1996] reproduced the along-shore crossing of
isobaths of the surface flow and deeper onshore flow in the canyon in the same

direction as if it was driven by the surface pressure gradient. In the same study the
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wind was modeled by a uniform mass sink at the coast, thereby representing the
Ekman layer without the added cost of additional layers. This simple model shows
that the onshore flow is funneled by the canyon, pumping offshore water onto the
shelf.

Han et al. [1980] found that upwelling favorable winds tended to pile water
up over the Hudson Canyon, located in the New York Bight. He utilized a finite-
element, steady state diagnostic model forced by local winds. Klinck [1996]
investigated the impact of flow direction and stratification on the flow in a
numerical model of pressure driven flow over smoothly varying canyon topography.
In his weakly and strongly stratified cases, flows simulating upwelling and
downwelling conditions were shown to have vastly different effects on the
processes leading to cross-shelf exchange. Downwelling flows tended to follow
isobaths and upwelling flows tended to push water up onto the shelf due to

baroclinic adjustments within the fluid.
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3 Analytical Model

3.1 Problem formulation for a 2-layer adjustment

Klinck [1988; 1989] pioneered the development of analytical models to
explain circulation over submarine canyons. His approach was to apply a
geostrophic adjustment to a flow over a channel. With his solutions, Klinck was able
to describe a number of important features of the circulation on continental shelves
intersected by a canyon. Based on his work, simple solutions of the Navier-Stokes

equations can be readily derived, and provide a basis on which numerical solutions

Figure 4 Side view of the two level model. The variable for each
level of the model is indicated.

can be judged.
The model equations are posed in "level" format [Pedlosky, 1987], which is

best thought of as a finite difference representation of the vertical gradients in the
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governing primitive equations. The model setup is such that a coastal current is
driven by a surface pressure gradient. There is a submarine canyon that is situated
perpendicular to the geostrophically driven flow and the model has two levels; see
figure 4. The finite difference

approximation to the potential-vorticity equation permits continuous stratification
while confining the surface level to the shelf and the lower level to the canyon.
Initially the lower and upper layers are in geostrophic balance with the free-surface
pressure gradient. The structure of the initial flow takes the form of a sine function

varying only in the along-canyon canyon direction; see figure 5 .

Along-Canyon Structure of Initial Sea Surface Displacement
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Figure 5 The along-canyon structure of the initial sea surface and
cross-canyon velocity.
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The governing equations in terms of non-dimensional variables for inviscid

flow over the region above the canyon (0<x<1, where [ =

width of the canyon) are

Juy an
ot = 17 ox
v, oan
a9y
an du, 0Jv, dus
- (mra) (G
Juz on £ dp,
ot * T ox  “ox
dv3 on dp;

ot = BT 9y 2oy

dp, (6u3 dvs )
>, — 03

ot = %2\ax Ty

dv,

L . .
—fD , the non-dimensional

Jap

)

(1)

(2)

(3)

(4)

(5)

(6)

The parameters in (3-6) are the non-dimensional thicknesses of the levels, H; /D, for

i=1,3 and the stratification parameter, ¢, = (%) . (% (ﬁ)), where p(2) is the
0

temporal and spatial mean stratification.

The variables are non-dimensionalized as
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W, v)~U (7)

(%, y)~(gD)'?/f (8)

'~ f (9)

n*~my = U (D/g)"/? (10)
d _

P~ —Nog-p (11)

The vorticity equation for each level is obtained by cross-differentiating the
momentum equations and substituting from the continuity equation. The resulting

equations are integrated in time to give.

1
G+ () Cn+ e = Gy (12)
1
1
Gt (5) (p) = ) (13)
Sv;  Sug) . . . . . . .
Where 4; = (E - E) is the relative vorticity for level i and the integration

constants, C;, are determined from the initial conditions. The governing equations

for the final adjusted state are obtained from the divergence of the momentum
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equations at each level, using the continuity equation and assuming steady state.

The nondimensional governing equations (1-6) reduce to

1
Vi + (=t p2) = Gi(xy) (14)
1
5 6, + 85 1
VP + ———p,+ 1 =0Cky) — C(xYy) (15)
6163 ()

for the region above the canyon (0<x <1), while on the other sides of the

canyon (x<0 and x>1), the governing equation is

1
vin — 5= Ci(x,y) (16)

The boundary conditions are, no disturbance to the initial flow far from the canyon
(|x] = o0) and u3=0 at the canyon walls. The second equation is imposed as
N+ &p, = 0alongx=0,1.

The initial state is geostrophically balanced flow over the shelf and in the
canyon, figure 5, or

u; (t = 0) = cos(uy) (17)

us(t = 0) = cos(uy) (18)



20

n(e=0) = — () sinGuy) (19)
u
pa(t=0) = 0 (20)

where u = (Li)

c

(@) and L.= 50 km, the dimensional width scale of the initial

forcing current.

The potential vorticity for the initial state is

1 .
C= (u+ ﬁ) sin(uy) = €, sin(uy) (21)

C3 = usin(uy) (22)

Given the trigonometric structure of the forcing, the solution to (14) and (15)

can be found in the form

1 .
C= (u+ ﬁ) sin(uy) = €, sin(uy) (23)
C; = psin(uy) (24)

The x structure of the solution on either side of the canyon is obtained by

integrating
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d R
(w2 +=)5 = 25
ekl (u +51)” Gy (25)

and retaining only the decaying solution. For x < 0 the solution is

1 1/2 61
A 2 _ _
n= Aexp ((,u +51) x) 1 (26)
uw o+
1
and forx > 1,
1 A
A 2 1\2 Cl
= Dexp —(# +5—) (x—1) |- 1 (27)
1 #2 +6_
1

The equations governing the flow over the canyon (15) and (16) are coupled so it is
convenient to convert to normal modes. A modal amplitude is definedas M =7 +
ap, , where « is a constant to be determined. The governing equation for M is
obtained by multiplying equation (15) by @ and adding it to equation (14). In the
process of reducing to only modal variables, a consistency condition (a quadratic

equation) appears that specifies the form of a as

2 1/2
_ (6: + (1 — &)63) 4e,03
T3 (‘1 * (1 fera- ez>63)2> ) .

and the resulting model equation is

2

d= . . A
WM + (B £ _#Z)M =GP t6; (29)

where

pr=(1-ate ™)/ 6 (30)
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The surface elevation and density are recovered from the modal variables as

_(ayM_—a_M,)

@, —a_ (31)
= (M+ ~ M_> 32
P2 = @, —a. (32)
The solution to the modal equation (29) is
Mx= B+ exp ((—(u? + f)/?)x) + € £ exp (2 + pV2(x - 1)) - GHP (33
- - u2+p

The six integration constants (A, B+, B_, C+, C_, D) in (26), (27), and (33) are
determined from the requirement that both 7 and %ﬁ be continuous at x=0 and 1

and that7) + &,p, = 0 along the edges of the canyon (x=0,1). These conditions lead

to a 6x6 system of linear equations described below.

1\/? C a —a_M
lim |Aexp ( Z 4 —) x| —-——| = lim (o, M +)] (34)
x—0 61 2 + l x->0*
[
M 1\2 >
a —a_ 2
lim [( +M +)] = 11m D exp (u + ) (x—1) |- ! (35)
x—>1— x-1t 61 2 + l
U 5,
d 142 ¢ d [(asM_ —a_M.,)
et 2 s _ — T e + +
xllgl dx A exp ((” * 61> x) 1 xlggl+ dx [ a, —a_ ] (36)
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_d(ayM_—a_M,)
llm—[ ]
x-1~ dx a, —a
1 R (37)
p—— 24 2V x-1 !
i tloen(-(e 2 a-n) -5
u+ -

The last two equations, (37) and (37), in the 6x6 set of linear equations are
based on the requirement of 7 + €,p, = 0 along the edges of the canyon (x=0,1).

This leads to the one final equation evaluated at x=0 and at x=I:

a,M_—a_M M, —M_
(a4 +)+82<+—)=O

38
a, —a_ a, —a_ (38)

3.2 Analytical Model Results

The first two model runs presented are identical to those presented in Klinck
[1989] they are shown here to verify the numerics of the model. The third run is
highly akin to the situation present in Mackenzie Bay. In these two-layer simulations
the steady-state momentum equations are solved analytically. From the solution
four non-dimensional length scales emerge: p! the y-structure of the initial flow

(figure 5); the external deformation radius away from the canyon, §;; and the

external and internal deformation radii over the canyon, ,8;1/ % and p=1/?
respectively. Thus for parameters representing typical coastal 22 shelf systems
(depths of 100 m, density gradients of 2 kg/m3 per 100 m), coastal currents are found
of width 10-50 km, external radii are 200-400 km and internal radii are 2- 10 km.
The non-dimensional parameters which represent the barotropic mode are O(1),
the along-shelf scale of the initial current is 0(10-1), and the baroclinic scale is O(10-

2). From this non-dimensional order of magnitude analysis, we can conclude that the
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influence of a coastal canyons on a typical shelf will decay with the width scale of the
initial current. Over the canyon, the baroclinic mode will decay away from the
canyon with the width scale of the internal radius of deformation and the barotropic
mode will decay with the scale of the forcing current.

For a simulation of a wide canyon, 200 km; figure 6, the cross-canyon flow

above the canyon is slowest at the edges of the canyon, and the influence of the
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Figure 6 The adjusted, steady state across canyon sea surface
height, level 2 density anomaly, level 1 velocities, and layer 2
velocities for a canyon that is 10 km wide.



canyon decays with the scale of the initial current, 50 km. The along canyon flow
both above and within the canyon seem to be strongly affected by the pressure
gradients. Displacements of the sea surface; figure 6, reveal a bulge of fluid above
the canyon reaching a maximum of about 0.75 cm above the canyon walls. This
pressure gradient drives flow vertically so as to oppose the surface elevations
initially prescribed. The effect of these vertical excursions of the fluid within the

canyon is to stretch and shrink vortex tubes, thereby creating regions of cyclonic
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Figure 7 The adjusted, steady state across canyon sea surface
height, level 2 density anomaly, level 1 velocities, and layer 2
velocities for a canyon that is 200 km wide.
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and anti-cyclonic vorticity. In this particular model run, lower layer
maximum isopycnal displacements are about 10 m. These small displacements of

the isopycnals in comparison to the findings of Freeland and Denman [1982] or of
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Figure 8 The adjusted, steady state across canyon sea surface
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velocities for a canyon that is 40 km wide.

Kulikov [1997] are a direct result of the weak forcing (10 cm/s) and weak

stratification (3—2 =-0.02 kg/m3 ) in this run.
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Vertical excursions of the isopycnals stretch vortex tubes and create two
regions of anticyclonic vorticity located at the canyon walls. The effect of having
anticyclonic vorticity at the canyon walls is to form a region of cyclonic circulation in
the lower layer. In this wide canyon case a trapped cyclonic eddy exists in the lower
canyon, as a result of the steady state solution. In the upper layer the surface is
displaced by 0.75 cm, so vortex tubes are being compressed above the canyon walls,
and regions of cyclonic vorticity are formed there. In contrast to the conditions
within the canyon, the conditions outside of the canyon act to form an anticyclone
above the canyon. In both levels the canyons influence on 24 along-canyon flow and
density excursions decays with the scale of the internal deformation radius.

The second model run was conducted with a canyon width of 10 km, all other
model parameters are identical to the case of the 200 km wide canyon. Figure 7
reveals that the cross-canyon velocities in the lower level are less than those for the
200 km case. The narrow canyon's influence on the shelf decays on a length scale

that is proportional to the length of the initial forcing current.
. : . ]
The third model run considers a more strongly stratified water column (a—z =

-0.1 kg/m3 ) and a water depth over the shelf of 10 m and canyon depth of 50 m. The
internal deformation radius in this run is 5 km, so the canyon width is 8 times
greater. Figure 8 reveals a maximum density anomaly of 1 kg/m3, corresponding to
an isopycnal displacement of 10 m at the rim of the canyon. These model runs show
that exchanges of water between continental shelves and canyons reduce cross-
shelf pressure gradients which drive flows within canyons; and that a

geostrophically balanced current can force flow near the rim of a canyon up one side
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and down the other. The magnitude of the predicted flow in the canyon decreases as
the canyon narrows. Increasing stratification in this analytical simulation leads to
increased along canyon flows within the canyon but does not change the flow
characteristics above the canyon rim. The effect of compressing and stretching of
Taylor columns below the canyon rim leads to the formation of a trapped cyclonic

eddy. Above the canyon rim, a trapped anticyclonic eddy is formed.
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4 Problem Formulation for Numerical Simulations

The underlying physics present in the analytical model above represent steady-
state, inviscid and linear dynamics. As earlier observations have shown, not all
submarine canyons behave in a linear manner and the assumption of frictionless
flow certainly can not help to clarify the effect of the winds. The underlying
assumption of geostrophy may also be incorrect as the baroclinic adjustments
leading to secondary flows are certainly not geostrophic. Because of these
complications, a numerical simulation which solves the full set of Navier-Stokes
equations for a wind-forced upwelling event in the Mackenzie Bay may help
elucidate the underlying dynamics in this region.

Numerical simulations presented in this paper were made with version 3.0
of the S-Coordinate Rutgers University Model (SCRUM). SCRUM utilizes the
Boussinesq approximation in which density variations are assumed to be small in
comparison to a mean density except when gravitational forces are essential.
SCRUM also assumes that the dominant force balance in the vertical momentum
equation is between the vertical pressure gradient and the gravitational force, the
hydrostatic assumption. SCRUM solves the shallow water forced equations of
motion over a terrain-following, stretched sigma coordinate system with a free
surface [Hedstrom, 1997]. The model is designed for circulation in an environment
with strong changes in bottom topography, weak friction and non-linear dynamics.

The grid discretization used in SCRUM is a centered, second-order finite

difference approximation in the horizontal and vertical with the staggered Arakawa
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"C" grid arrangement of variables. SCRUM utilizes a fractional step method to couple
barotropic and baroclinic modes in the split-explicit time stepping procedure. The
depth-integrated equations of motion are solved on a short time step due to the
presence of the free surface. The integrated values of the barotropic mode are then
substituted into the full 3-D equations of motion which are integrated on a longer
timestep [Hedstrom, 1997]. For the barotropic mode the model is time stepped from
time n to n + 1 via a leapfrog, centered in time and space method. This method is
accurate to O(At?) but it is unconditionally unstable with respect to diffusion
processes. In order to counteract this a trapezoidal correction is applied every time
step. This combination of a leapfrog predictor and a trapezoidal corrector time
stepping is stable with respect to diffusion and strongly damping in respect to
errors arising out of the computational mode. The only disadvantage to this
combination of a leapfrog/trapezoidal predictor/corrector is that it requires twice
as much computation time as compared to the pure leapfrog method. The full 3-D
fields are time-stepped via a third-order Adams-Bashforth method [Haidvogel and
Beckman, 1999]. Time stepping limitations arise due to instabilities which can grow
unbounded; the constraint is usually referred to the CFL condition. The model runs
presented herein use a 50 second time step for the barotropic mode and a 250
second time step for the baroclinic mode; the CFL condition specifies that a
minimum time step of 90 seconds is required for numerical stability.

The simulated coastal domain is 100 km long in the cross-shore direction
and 300 km long in the alongshore direction. The domain has a single, straight,

coastal wall on its western boundary. In order to make comparisons between the
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analytical model and the numerical model more straightforard, at the coast a free
slip, or no stress, condition is applied. The no stress condition neglects frictional
effects of flow normal to the coastline. To the north and south I have specified a
periodic boundary which allows particles with all of their dynamical properties to
propagate out of the boundary and back in on the other side. A simple
representation of the periodic boundary condition is a rotating, circular flume tank.
Geometrically, the periodic boundary conditions resemble an annulus.

For the offshore boundary along the eastern edge I have specified an Orlanski
type radiation boundary condition. This boundary condition prevents waves or
tracers from being reflected back into the domain once they reach this outer
boundary. This is achieved by evaluating the phase speed at which a tracer, the free
surface or the cross- shelf velocity is approaching the boundary at each time step.
The computed phase speed is then used in a Sommerfield type radiation condition
at the boundary [Chapman, 1985]. I have also utilized the Large et al. [1994]
turbulence closure scheme in these model runs.

The model domain is 10 m deep at the coast and 50m deep offshore, the
canyon is 40km wide and 50km long. These parameter choices were chosen to
closely simulate the bathymetry of the Mackenzie Canyon and Bay. To the East of the
Mackenzie Canyon, the direction of interest for the propagation of coastally trapped
waves, the shelf depth is approximately 50 m deep out to 100 km offshore where
the shelf break and depths of 2000 m are encountered [Kulikov et al,, 1998]. The
maximum slope anywhere in the domain is about 0.1 %; see figure 9 and table 2 for

a complete description of the geometric length scales used in these simulations.
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Over this domain I have specified a grid that is 2 km by 2 km in the horizontal and
contains 20 vertical levels in the stretched sigma coordinate system. [ have
incorporated bottom friction by specifying that the flow must obey a quadratic
decay law, which forces the velocity to reach zero at the sea floor. The bottom drag
coefficient used here is 3 x 10-3. These model runs simulate idealized conditions
present off of the Mackenzie Shelf in the summer, stratified season; see figure 10.
The model is started from rest and is forced by a 3.5 m/s wind from the
south, upwelling favorable. This corresponds to a wind stress of 0.03 N/m2
according to the formulae of Wu [1980]. The winds are ramped up over a period of 2
days with a sinusoidal function; this is done to minimize the number of initial
transients, which are not removed from the domain due to the periodic boundary
conditions. After model day two, the winds are uniform and constant up to day

seven. At day seven the winds are shut off abruptly in an effort to allow upwelled
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Figure 9 Bathymetry of the two cases.
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isopycnals to slump into the interior, thereby becoming the forcing mechanism for
internal waves [Beletsky et. al, 1997; Keen and Allen, 2000].

Model parameters are given in table 1, the non-dimensional numbers are
computed using the methods as presented in Munchow and Garvine [1993]. The
flows that are presented in this paper are low Rossby number flows, meaning that
they are weakly nonlinear.

They have a Burger number of 0(10-1) indicating that the flow may be modified
substantially by the relative vorticity produced by variations in topography. And

these flows are also of low Froude number, indicating that particle speeds are much

Figure 10 Cross-shelf structure of the initial density profile
used in the model runs, values given are sigma-t with units of
kg/m3.
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smaller than internal wave speeds, and thus implies a subcritical flow. One can infer
from the small Rossby number and the Froude number less than 1 that both

stratification and rotation are dynamically important.
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5 Numerical Simulations

5.1 Boundary Condition Verification

In order to verify that the periodic boundary conditions specified in these
model runs do not significantly alter coastally trapped waves, | have constructed a
test of these boundary conditions. A fiat bottom, barotropic kelvin wave has an
analytical solution which is most easily applied as an initial condition; see Gill
[1982] for a complete review of Kelvin wave dynamics. Assuming only linear,
inviscid dynamics, this type of wave should propagate uniformly along a coastal
wall. In the case of the periodic boundary condition, the effectiveness of this type of
boundary condition may be evaluated. In figure 7, contours of sea surface height for
time zero of the analytical solution for the fiat bottom kelvin wave are shown. In this
model run a kelvin wave with a wavelength of 100 km is prescribed. The model has
a depth of 100 m so this wave has an analytical phase speed corresponding to 31.3
m/s, and a period of 53.23 minutes. Spectral analysis computed by utilizing the Fast
Fourier Transform of the mean removed sea surface height at stations 1 through 4,
see figure 12, reveals a spectral peak at 3.12 x 10-4 Hz, corresponding to a period of
53.4 minutes. This difference of periods between the analytical solution and the
computed numerical approximation corresponds to an error of 0.3%. Taking into
account the fact that these waves had to be discretized onto a 2 km grid, this is well
within the levels of error associated with stable numerics. A second spectral peak at
exactly twice the frequency of the first peak can also be seen in the periodigram for

sea level. This spectral peak is 5 orders of magnitude smaller that the first peak and
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probably corresponds the first harmonic arising due to some non-linear interactions
within the model. Error bars show that this second peak is hardly discernable as

compared to the background noise.
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Figure 11 Contours of sea surface height and station locations for
the boundary condition verification runs. Solid lines represent a
piling up of the free surface and dashed lines represent a
depression of the free surface.

In order to assess the propagation of these waves on a numerical grid an
analysis technique developed by Kundu and Allen [1976] termed the "lagged"
correlation function is used. This technique computes the cross correlation for
various time lags in sea level, currents or isopycnal displacements between two
stations. A plot of time lag for maximum correlation versus the alongshore distance
of separation between stations can then yield an estimate for the phase speed of a
propagating feature. In figure 13, maximum correlation versus alongshore

separation reveals that the phase speed of the propagating feature is 30.6 m/s, an
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error of 2.2%. Again the error associated with the phase speed of barotropic kelvin

waves on this numerical grid is neglible as compared to the errors, which might be
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Figure 12 A time series of sea surface height and its associated
power spectra for station 1.

expected from an improper grid resolution. We therefore conclude that periodic
boundary conditions do not significantly alter the propagation of these waves and

that the horizontal grid resolution of 2 km is sufficient.

5.2 Shelf without canyon

In the model run without a canyon the northerly alongshore winds create an Ekman

type surface flow in the offshore direction; see figure 3 for a schematic of Ekman
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transport. The net mass transport of the surface layer offshore leads to a pressure
gradient directed onshore. This can be seen in the free surface elevation, which is

uniformly increasing in the offshore direction; see figure 14. An onshore subsurface
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Figure 13 Time lag for maximum correlation versus alongshore
separation for stations 1 through 4, for the boundary condition
verification runs.

flow is forced in response to this pressure gradient. [sopycnal displacements are
observed to take place within a day after the onset of the winds and a long shore
current flowing northward develops soon afterwards. This alongshore current is a
result of the geostrophic balance between the Coriolis force directed offshore and
the pressure gradient directed onshore. The upwelling elevates isopycnals at the
coast uniformly in the along shore direction. Over the shelf and slope there is no
along-shore variability in the velocity field; see figure 14. Upon cessation of the wind

the upwelling continues for a short period of time but the long shore flows seem to
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dissipate rather quickly, due to the drop in the sea surface and subsequent decrease

in the cross-shore pressure gradient; see figure 15.

EERTERERR R RAL AR EAES

Figure 14 Contours of the free surface elevation at model day
5.25, values have been averaged over one inertial period.

There is no isolated pooling of dense water on the shelf during the upwelling or
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Figure 15 Time series of sea surface height at station 3, located
on the shelf break, for the run without a canyon. Station data is
written to a file at every baroclinic step of the model, 250

seconds.



afterwards; see figure 16. According to Bowden [1983], the depth integrated

offshore mass
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Figure 16 Contours of sigma-t with current vectors 2 meters
below the surface at model day 5.25.

flux should be proportional to the alongshore wind stress over the Coriolis

parameter; see equation 1.

(39)

In this case My is 235 kg/ms which is in agreement with the calculated offshore
mass transport as depicted in figure 17, which represents onshore and off shore
mass fluxes as a function of distance from the shore. In this figure the sum of
onshore and offshore mass fluxes exactly balances, indicating that net cross-shore
mass transport is zero. This is also consistent with the findings of Allen [1995]
where a two-dimensional numerical model is used to simulate wind-forced

upwelling over the Oregon Coast.

40
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Figure 17 Across-shore mass flux as a function of distance from
the coast for the run with no canyon. Positive and negative values
represent offshore and onshore mass fluxes respectively. The
dashed line represents the sum of on- and off-shore mass fluxes.

5.3 Shelf With Canyon

For the model run with a shelf and a canyon a very different dynamical
picture evolves. The Ekman type offshore flow in the surface layer develops in much
the same way as the run without the canyon, but the onshore pressure gradient
seems to be affected by the presence of the canyon. Figure 14 reveals a bulge in the
free surface over the canyon and figure 16 shows an isolated pooling of dense water
on the shelf at the head of the canyon. Along shore surface velocities reveal an anti-
cyclonic turning of the flow field over the canyon. As the canyon width is
approximately ten times the internal deformation radius, table 1, I expect that the

canyon should exhibit some bathymetric steering to the flow field due to the
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tendency for a fluid column to conserve its potential vorticity. This is very nearly the

case for the velocity field at 20 meters (not shown); as there is a strong turning
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Figure 18 Total volume flux in m3/s as a function of alongshore
distance for transects that are located 10 km, 20 km, 50 km and
60 km east of the coastal boundary. The axis of the canyon in

these plots is located at 150 km.

into the canyon by the upstream portion of the flow, and a return flow from the
downstream side of the canyon. The along-isobath flow is very clearly seen in figure
18, where peak onshore volume transports take place to the south of the canyon

axis and peak offshore transport occurs to the north of the canyon axis. The
bifurcation of the flow within the canyon itself is due to the baroclinic adjustment
caused by the upwelled isopycnals. As fluid enters the canyon it is accelerated by the

pressure gradient which in turn causes it to be moved across isobaths and
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upcanyon. The displacements of the isopycnals causes the baroclinic component of
the pressure gradient to be in the same direction as the barotropic component, and
fluid parcels are transported onto the shelf, out of the canyon. Within the canyon,
the magnitude of the return flow does not match the magnitude of the upcanyon
flow and a net displacement of water is upcanyon. This pattern of upwelled water in
the canyon agrees qualitatively with the weakly stratified upwelling case in Klinck
[1996].

As figure 18 indicates, the zero crossings of the onshore and offshore volume
fluxes are displaced towards the north as one moves onshore. It should also be
noted that onshore volume fluxes decrease substantially as one approaches the
coastal boundary and that away from the canyon the net cross shore volume flux is
zero. Of particular significance is the fact that the upstream influence of the canyon
decays with a length associated with the radius of the canyon. Where as the
downstream influence of the canyon decays with a larger length scale than that
associated with the canyon radius. This signifies that the advection of fluid taking
place due to the wind forcing is causing the effects of the canyon to be felt more
strongly in the direction that is opposite to that expected from the direction of
coastal wave propagation, i.e. with the coast on the right. Haidvogel and Brink
[1986] observed that mean currents can be generated in the vicinity of submarine
canyons with a time oscillating wind field. These mean currents are driven by the
effect of topographic form stress, their direction is in the sense of coastal wave
propagation. Due to the effect of the constant wind field I do not observe this

mechanism of topographic form stress taking place.
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Another interesting aspect is that of the vertical velocities within and above
the canyon see figure 19 . At the mouth of the canyon I observe a vertical jet of water
directly above the central axis of the canyon. This jet is displaced northward by the
overlying flow and there seems to be a resultant down welling on the downstream
side of the canyon. The pattern of upwelling on the upstream side of the axis of the
canyon and downwelling on the downstream side of the axis is also very clearly

seen in the along-shore isopycnal contours. Figure 20 reveals that along the axis of
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Figure 19 Vertical velocities 1 meter above the shelf during
model day 5.25. the canyon axis is located in the center. Note
regions of strong up and down canyon flows. Units for the color
contour are in cm/day.

the canyon net onshore mass transport is nearly 5 times the offshore Ekman surface

transport, as calculated by equation 39.
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5.4 Wave Generation

For the case of the runs without a canyon figure 21 depicts the observations
of density at a point in the pycnocline. Internal waves should cause oscillations of
the pycnocline which can be seen in this figure. Although, discerning exactly what
type of oscillation is made difficult by the exponential decay of density at this point.
In Figure 22, a time series of cross shore velocity and its associated power spectra is
shown. One can see that the cross shelf velocity, taken at the surface for a station
located on the shelf break, reaches a constant value at model day 4. At model day 7,

the winds are shut off and an oscillation begins. The power spectra, computed using

500 T T T T T T T T T
3 : ;
, : & 2
X % T
E D 5 : : : : - : 9%,
=500 f------- Seves T\ ........ e uivenasd fasandasy Trissiben o N e 5 e ke 4 !..
: : : y . : ; s
P \ : : 1)
g ‘.‘ . . //
£ 1000t : \ ......  LE- TSP f, ........... 4
g N {)
X /
IR TE IR B
1500 -+ --- eenyecas eeneseantenanes N Ao asavas paresven T /,,': ........ P e .
> : : : \ : : Dol :
L 1.
PO <1 - + 2% o2 <0353 0h s 5nsa s wadmso s T i Wy, SO SRLRRC 4
o R A T O et e Yol S
0 10 20 30 40 50 60 70 80 P 100

Figure 20 Across-shore mass flux as a function of distance from
the coast for the run with a canyon. This transect is along the axis
of the canyon.
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a mean removed FFT with the record beginning at day 7, for this oscillation reveals
that the dominant frequency of this oscillation is 2. 2e-> Hz. This wave form has a
period of 12.63 hours, a near-inertial oscillation, and it is generated at the very

moment that the-winds cease.
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Figure 21 A density profile and a time series of density at sigma
level 6 (pycnocline depth) for the run without a canyon. Station 3
is located at the shelf break.

For the canyon case, figure 23 depicts density fluctuations at stations located on the
shelf break. Again, interpretation of these fluctuations is complicated due to their
exponentially decaying nature. In figure 24, the time series of velocity for all stations
on the shelf is shown, it reveals that a wave of the same frequency as the run
without a canyon is being generated. I do not see any modification of the dominant

frequency of this wave form as [ have also looked at along shore velocity, velocities
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at mid-depth and bottom velocities. For the case of a canyon and a shelf without a
canyon, the same dynamical picture emerges: an inertial wave is being generated in

response to a sudden wind relaxation event.
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Figure 22 Cross shore velocity at the surface for a station located
on the shelf break and the associated power spectra of the time
series beginning at model day 7.

These plots of velocity are easier to believe than the density time series presented
earlier. First, the velocity record does not contain the exponential decay apparent in
the density time series. And second, the velocity record begins to oscillate almost
instantaneously after the winds are shut off. The barotropic wave phase speed is 22

m/s; therefore the fastest waves circle the domain in about 4 hours. This wave form
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that | observe in these time series plots of velocity is therefore propagating around

the domain, unmodified by the canyon topography.
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Figure 23 Density Fluctuations for the stations located on the

shelf break, stations 3- 13 are located to the south of the canyon
and stations 18 and 23 are located to the north.
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Figure 24 Time series of cross shelf velocities at the surface for

the run with a canyon.
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6 Conclusion

The model runs that I have completed thus far show that wind forcing creates a
very different result when it occurs over a shelf with a canyon versus a shelf alone.
In both cases the winds create an Ekman type offshore flow. This offshore
displacement of the surface layer leads to a baroclinic pressure gradient directed
onshore. This pressure gradient can be seen in the free surface elevations in both
cases. A major difference in the free surface elevations is that the canyon run
influences the free surface in such a way as to create a bulge over the axis of the
canyon, whereas the shelf run creates a uniformly increasing pressure gradient
directed on shore. The shelf-only model run does not contain any longshore
variability in the velocity field or in the isopycnal displacements. The model run
with canyon topography does contain longshore variability as well as offshore
variability in the velocity fields. In terms of wave generation, I do not observe the
phenomena of internal Kelvin waves being generated after the cessation of
upwelling favorable winds. I do see similiar inertial responses to shutting off the
winds in model runs both, with and without canyons. Overall I have observed that
canyons act as a conduit for vertical motions during upwelling events. The surface
isopycnal outcroppings also show that a canyon tends to localize the effects of
upwelling to the coastline located shoreward of the canyon axis. Also the-presence
of a submarine canyon greatly enhances the mixing between shelf and offshore

waters.
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My runs thus far do not simulate the internal waves that have been observed
in the Beaufort Sea and that is be due to several factors. First, a very weak forcing is
applied over the model domain. Current magnitudes of approximately 50 cm/s are
generated and the associated inertial radia of these flows is very small. This tends to
decrease the effects of inertial forces due the much larger effects of the particle
phase speeds within the flow. Second, my boundary conditions, which are
appropriate for the simulation of coastally trapped waves, may be inappropriate in
their ability to adequately represent exchanges of momentum at the offshore
boundary. My model domain essential reproduces a shelf of infinitely many
submarine canyons, each separated by 300 km. Although, the analytical model of
Klinck [1989] suggests that the effects of a canyon should decay with a length scale
shorter than even half this distance, I suspect that the localized exchange of fluid
within the submarine canyon is affecting processes on the shelf located hundreds of
kilometers away. Even though my domain is large enough to contain processes
which are taking place on the length scale associated with the internal deformation
radius, it does not adequately contain processes which might take place with length
scales associated with the external deformation radius i.e. barotropic kelvin waves.
The inability of these simulations to allow motions of this large scale may greatly
inhibit important dynamical processes, which are essential for the excitation of
internal waves.

In conclusion, it has been demonstrated that highly idealized numerical and
analytical simulations of flows over submarine canyons reveal many important

dynamical processes, which have been observed in the field. The limitations of these



models lies in their simplifications of bathymetry and their inability to accurately
reproduce flows along open boundaries: The issues associated with limiting
boundary conditions are at the forefront of computational and numerical ocean
simulation science. In the future, faster computers with greater allocations of
memory may be able to more accurately reproduce observations collected in and

around submarine canyons.
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Name: Equation Shallow Deep
(H=10m): (H=50m):
Barotropic Wave Phase c = /g]-[ 99 ms? 22.1ms1
Speed
Stability Frequenc 0.06s1 0,026 s1
y rreq y g 6p
N= [Z£. =
po 0z
Internal Wave Phase Speed ¢ci =NH 0.58 ms'1 1.3 ms1
Coriolis Parameter f 1.37x10%s1 1.37x10%s1
= 2Qsin(0)
Internal Deformation Radius Ay = Gi 4.2 km 9.4 km
f
External Deformation Radius 1 = ¢ 72 km 162 km
i
Inertial Radius L = Y 400 m 160 m
==
Burger Number A\> | 0.1 0.4
S=(—+—
(%)
Rossby Number R = U 0.09 0.09
o fL
Froude Number Fe u 0.86 0.38
Ci
Table 2: Geometric Scales
Parameter: Description: Value:
CL canyon length 50 km
CwW canyon width 40 km
hs depth at shelf break 10 m
hq depth at slope edge 50 m




