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In the modern ocean, eukaryotic phytoplankton are central to global carbon cycling and 

general food web structuring. Their rise to dominance began in the Mid-Triassic with the 

rifting of Pangea and the flooding of continental margins. They radiated on these 

margins, where weathered nutrients from the continents were abundant. Turbulence, 

frequency of nutrient pulses, nutrient composition and concentration have been 

implicated as selective agents driving phytoplankton evolution, however, it has been 

difficult to demonstrate the relative importance of these selective agents on modern 

continental shelves for two reasons; (i) the inherent physical forcing dynamic of a 

continental shelf is not well sampled using traditional oceanographic techniques, and (ii) 

incomplete understanding of how evolutionary mechanisms operate on similar timescales 

as the physical forcing dynamic.  

 Because of these limitations, an empirical synthesis has yet to be achieved 

between the evolutionary history of phytoplankton and what we observe in the 

contemporary ocean. The goal of this work is two-fold; (i) to objectively elucidate the 
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mosaic pattern of continental shelves into their statistically significant water masses and 

(ii) illustrate how these water masses influence evolutionary processes in diatoms.  

 I demonstrate, for the first time, that optical and hydrographic based time series 

data from in-situ profilers and from multiple satellites can be objectively delineated into 

statistically meaningful water masses that are verified by changes in current structure, 

salinity and macronutrients on continental shelves. Furthermore, because this approach is 

time-resolved, I show that the highly structured continental shelf environment is 

characterized by punctuated change. I use this concept of punctuated change on 

continental shelves to test the hypothesis that phytoplankton genomes are capable of 

evolving in a punctuated manner through the expression of retrotransposons. I show that 

retrotransposon expression is induced through nutrient limitation, and represent a 

punctuated evolutionary event. Finally, I examine how processes such as retrotransposon 

activity affect the rate of genome evolution eukaryotic phytoplankton and other 

eukaryotic organisms. 
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CHAPTER 1 

1.0. Introduction 

  In the modern ocean, eukaryotic phytoplankton play a critical role in ocean 

biogeochemistry by participating in primary production, and exporting carbon to the deep 

sea through the biological pump (Dugdale and Goering 1967; Eppley and Peterson 1979), 

and the structuring of marine food webs (Ryther 1969; Azam et al. 1983). Given their 

importance, much work has focused on their geological (Katz et al. 2004), fossil (Finkel 

et al. 2005; Young et al. 2005), and molecular records (Kooistra and Medlin 1996; de 

Vargas et al. 2002) as well as their modern ecology and physiology (Falkowski and 

Raven 1997). Developing a synthetic view of their evolutionary history and their modern 

ecology is inherently difficult because it requires integrating processes operating on 

vastly different time and space scales. Nevertheless, great advances have been made with 

respect to this task in-silico (Tozzi et al. 2004; Fennel et al. 2005). Recent advances in 

ocean observational technology, genomics, and bioinformatics have opened the door to 

directly observe the evolution of eukaryotic phytoplankton (Rynearson and Armbrust 

2000). Phytoplankton bloom in large numbers and have short generation times, thus are 

good candidates for directly observing evolutionary change. However, recent advances in 

ocean observational technology, genomics, and bioinformatics have opened the door to 

directly observe the evolution of eukaryotic phytoplankton. The task of directly observing 

the evolution of phytoplankton is also confounded by the inherent physical dynamics of 

the ocean. Phytoplankton populations respond quickly to a variety of episodic forcing 

events in the ocean environment, including aeolian dust storms, hurricanes, eddys, 

upwelling and river outflow. However, because phytoplankton populations are 
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continually advected and mixed by these forcing events, tracking specific populations is 

exceedingly difficult. In the work presented below, I identify and address two particular 

issues related to the larger task of empirically synthesizing the evolutionary history and 

modern ecology of eukaryotic phytoplankton; i) the necessity to objectively determine 

the environmental structure of the marine environment (Chapters 2-3), ii) the necessity to 

identify observable agents of evolution that are modulated by the inherent structure of the 

marine environment and to demonstrate how they are integral to the overall evolutionary 

pattern of eukaryotic phytoplankton (Chapters 4-5). 

 1.1. The link between phytoplankton evolutionary history and the structure of the 

marine environment. 

  The necessity to objectively determine the environmental structure of eukaryotic 

phytoplankton emerges as a by-product of their evolutionary history. Eukaryotic 

phytoplankton are a polyphyletic photosynthetic group of organisms that, based on large 

subunit ribosomal sequence analyses, can be associated with at least five different deeply 

branching eukaryotic clades (Bhattacharya and Medlin 1995; Baldauf 2003; Falkowski et 

al. 2004). The broad scale phylogenetic diversity is also reflected in their physiology, 

nutrient quotas (Quigg et al. 2003), and life histories. However, despite their phylogenetic 

diversity, they are functionally united because they all require essentially the same 

inorganic nutrients for photosynthesis and for growth. In the ocean, understanding the 

distribution of phytoplankton species is inextricably linked to the distribution of these 

inorganic nutrients because they ultimately limit their growth (Eppley 1981; Falkowski 

and Raven 1997). Traditionally, ecologists have observed the various physiological 

characteristics of phytoplankton in a nutrient limiting environment and have considered 
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the continual coexistence of radically different species competing for the same nutrient 

pool to be paradoxical (Hutchinson 1961), as the principle of competitive exclusion 

predicts that under equilibrium conditions in a relatively unstructured environment, only 

the species which is best adapted for nutrient uptake would remain (Hardin 1960). Of 

course, the efficacy of exclusion principle on phytoplankton populations is relevant only 

if the premise of an unstructured equilibrium environment is true. In the ocean, the 

turbulent cascade of energy down to millimeter scales structures the nutrient regimes in 

the ocean in such a way that it prohibits equilibrium conditions (Kolmogorov 1941; 

Denman and Gargett 1983). Therefore, the apparent paradox of the plankton is alleviated 

by demonstrating that the premise on which the exclusion principle operates does not 

accurately describe the ocean environment. This solution has been demonstrated in 

numerical models (Siegal 1998; Tozzi et al. 2004). It should be emphasized however, that 

while these models give formal solutions to the paradox of the plankton, they also clearly 

demonstrate that phytoplankton species coexistence and persist as the direct result of the 

inherent structure of the particular environment in which they are found. Therefore, 

understanding both phytoplankton ecology, as well as why evolutionary disparate groups 

of phytoplankton are able to coexist requires detailed information about the structure of 

their environment (Margalef 1961).   

  On geologic time scales, changes in the structure of the marine environment 

appears to have had major influences on the evolutionary tempo of the three major 

modern groups of marine eukaryotic phytoplankton (i.e. Diatoms, Coccolithophores and 

Dinoflagellates). In the late Triassic, the supercontinent Pangea began to rift as part of the 

opening of the most recent Wilson cycle (Wilson 1966). This break-up, combined with 
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the rise in sea level flooded continental shelves and increased the total amount of 

coastline thus increasing the input of weathered inorganic nutrients from the continents to 

the newly flooded continental margins. It is during the Mesozoic when the fossil record 

shows that diatoms, coccolithophores and dinoflagellates radiate in parallel to the total 

area of flooded continental margins until the late Cretaceous suggesting that continental 

shelves act as engines of phytoplankton evolution (Falkowski et al. 2004). When sea 

level began to fall in the late Cretaceous, the diversity of coccolithophores and 

dinoflagellates also reduced; however, the diversity of diatoms underwent an 

unprecedented radiation. During this same time period, the latitudinal thermal gradient 

increased dramatically, thus increasing the total amount of wind-driven turbulent energy 

to the ocean and increased weathering of the continents resulting in a dynamic 

environment dominated by short, but intense nutrient pulses (Katz et al. 2004). It is in 

response to this highly dynamic, environment that diatoms diversify morphologically 

(Finkel et al. 2005) and rose to ecological and biogeochemical dominance in the 

phytoplankton that continues into the modern era.  

  While the exact oceanic environment in which diatoms radiated cannot be 

determined from the fossil record, diatoms have two characteristics that point to 

continental shelves. The first characteristic is a large intracellular storage vacuole that 

allows diatoms to uptake nutrients in excess of their immediate cellular requirement when 

nutrient concentrations are high, thus allowing them to survive on stored nutrients in a 

highly dynamic, non-equilibrium environment (Raven 1997; Tozzi et al. 2004). A second 

characteristic is their absolute requirement for silicic acids to construct their ornate 

frustules. Silicic acids can only be supplied by the weathering of continental rock, thus 
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effectively tethering the majority of diatoms to regions of the ocean with significant 

riverine input (Falkowski et al. 2004). Highly dynamic, nutrient pulsed environments rich 

in silica are chief characteristics of continental shelves in mid- and high-latitudes. 

Therefore, it appears as if for all three major eukaryotic phytoplankton groups, the 

inherent dynamic structure of continental shelves have had a direct role in determining 

their modern ecology and distribution. 

  While the continental shelves represent only about 8% of the surface area of the 

world’s oceans, they serve an important ecological function, as they are the buffer 

between the terrestrial environment and the open ocean (Biscaye et al. 1994; Falkowski et 

al. 1994). The physical forcing of the continental shelf environment results from a 

complex mixture of terrestrial and open ocean phenomena including storms, river 

outflow, upwelling and eddies which operate on the time scales of days to weeks. 

Furthermore, there is strong evidence that spatially and temporally dynamic episodic 

events drive shelf ecosystem dynamics (Malone et al. 1983).  

  In chapter 2, I develop and validate an inversion procedure that is capable of 

deconvoluting in-situ multi-spectral measurements of inherent optical properties. I 

validate my approach by comparing our derived parameters to four traditional 

measurement techniques (chlorophyll fluorometry, filter pad absorption, high pressure 

liquid chromatography, and spectral CDOM spectroscopy). Furthermore, I demonstrate 

that these inverted parameters are effective at discerning major water mass structures in 

the continental shelf environment. In chapter 3, I take advantage of the quasi-

conservative nature of optical properties on the continental shelf and apply it to the Mid-

Atlantic Bight.  We make use of a shelf-wide observing system that synoptically captures 
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the dynamical nature of a continental shelf and objectively elucidate the inherent 

structure of the continental shelf environment, which are validated by in-situ current, 

salinity and nutrient measurements and demonstrate that the environmental structure of 

the continental shelf can be synoptically captured by satellite. 

1.2. Evolution in response to continental shelf environment 

 Direct observation of evolution in action is difficult in many organisms because 

their life histories often preclude the experimental conditions to make such 

measurements. Traditionally, biologists circumvent this problem by inferring 

evolutionary processes through comparative studies. However, if an organism has a 

relatively fast growth rate and is able to be cultured in large quantities, the probability of 

detecting mechanisms evolutionary change in response to some environmental condition 

increases dramatically (Elena and Lenski 2003). These studies usually include tracking 

point mutations and gene frequency through time of microbial populations. Such studies 

are done less frequently in phytoplankton, due to a lack of detailed sequence information 

is necessary to track rates of evolution. However, sequencing of ITS regions in 

phytoplankton have made it possible to track evolutionary dynamics for some 

phytoplankton populations (Rynearson and Armbrust 2000; Iglesias-Rodriguez et al. 

2002). The phytoplankton genomes that have been sequenced (Thalassiosira pseudonana 

and Phaeodactylum tricornutum) hint at potential mechanisms of genome evolution. 

Both of these genomes contain transposable elements at appear to be active based on 

sequence analysis (Armbrust et al. 2004; Allen 2005) and that encode reverse 

transcriptase (retrotransposons). 
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 Retrotransposons are especially interesting when considering the evolution of 

genomes because of their ability to self-replicate. Retrotransposons are able to produce 

copies of themselves which generally insert themselves nearby the original element 

through an RNA intermediate. Because of their self-replicating activity, retrotransposons 

can act as a population, thus having the potential to significantly modulate an organism’s 

genomic structure. There are many examples of active retrotransposons, most of which 

have come from eukaryotic plant lineages (Grandbastien 1998). The first example of an 

active LTR retrotransposon was found in experimental tissue cultures of the rice Oryza 

sativa (Hirochika et al. 1996). This study showed that the stress of tissue culture 

increased the copy number of the Tos17 LTR retrotransposon significantly over a 16 

month period.  A more direct study of the OARE-1 a Ty1-copia LTR retrotransposon in 

the Oat species Avenia sativa showed that these retrotransposons were also activated by 

stress (Kimura et al. 2001). Activity of this retrotransposon was induced by plant 

wounding, exposure to UV light, and by the addition of jasmonic and salicylic acid. 

Increases of Ty retroelements has also been observed in S. cerevisiae in long term, 

continuous cultures (Wilke et al. 1992). In addition, dramatic activation of the Tnt1A 

retrotransposon in tobacco is induced in response to wounding (Grandbastien 1998). 

While direct evidence of retrotransposon activation in the natural environment has not 

been explicitly recorded, the natural distribution of the closely related BARE-1 LTR 

retrotransposon in natural environments suggest they are also active in natural 

populations.  It has also been shown that showed that there was a sharp change in the 

distribution patterns of the BARE-1 element in wild barley (Hordeum spontaneum) in 

response to microclimate habitats (Kalendar et al. 2000). Populations of barley on 
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adjacent north-facing and south-facing slopes of a canyon had large differences in the 

copy number of BARE-1. The close proximity of the populations suggested that gene 

flow between them was possible, however the population on the south-facing slope had a 

much larger copy number of the BARE-1 element. The increase of copy number was 

related to the harsher, more stressful environment associated with inhabiting a south-

facing slope. Taken together with the laboratory studies mentioned earlier, there is 

mounting evidence that genome restructuring through the activities of retrotransposons in 

response to stress is not a rare occurrence, but an active evolutionary response to local 

environments. Therefore, given the punctuated evolutionary nature of retrotransposons, it 

is possible that we could observe this evolutionary event in response to the stresses 

associated with the dynamic structure of the shelf in eukaryotic phytoplankton. In chapter 

4, I demonstrate that a retrotransposon in a diatom is activated under a nitrate stress 

condition, which is common to the continental shelf. Furthermore, in chapter 5 I 

demonstrate that the activity of retrotransposons and other mechanisms of insertion and 

deletion drive the overall pattern of eukaryotic genome evolution. 
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CHAPTER 2 

2.0. Inversion of spectral absorption in the optically complex coastal waters of the 

Mid-Atlantic Bight; development, validation and coherence to hydrography. 

2.1. Abstract 

Recent advances in hydrologic optics offer the potential for quantitative maps of 

inherent optical properties, which can be inverted into optically active constituents such 

as CDOM, phytoplankton and detritus.  During summer experiments in the Mid-Atlantic 

Bight (MAB) a procedure to invert bulk absorption measurements from off-the-shelf 

technology was developed. The inversion provides optical concentration estimates of 

phytoplankton, colored dissolved organic matter (CDOM), and detritus, all of which 

appear to be useful proxies for water mass and environmental structure. Inversion 

estimates were validated against chlorophyll fluorescence, filter pad absorption, and 

phytoplankton pigment measurements. The inversion could account for up to 90% of the 

observed variance in particulates, CDOM, and detritus. Robust estimates for 

phytoplankton community composition could be achieved but required constraints on the 

inversion that phytoplankton dominate the red light absorption. Estimates for the 

composition, as indicated by spectral slopes, for CDOM and detritus were not as robust. 

However, all of the inverted signals showed strong coherence to the spatial-temporal 

hydrographic structure of the coastal ocean, indicating that this approach shows great 

promise in developing optical proxies for environmental structure.  

2.2. Introduction 

Traditional ‘‘conservative’’ parameters (e.g., temperature and salinity) have been 

used to track water masses for nearly a century but developing additional parameters 
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from chemical signatures to extend water type identification and water mass analysis into 

multidimensional space is of great utility (Tomczak 1999). Such a capability would 

improve adaptive sampling strategies (Robinson and Glenn 1999), allowing researchers 

to study how water masses evolve. 

It has been suggested that traditional water mass markers might be complemented 

with standard biological measurements such as chlorophyll (Tomczak 1999) as an 

additional dimension would improve resolving water types in parameter space. 

Chlorophyll is a logical choice for this additional discrimination dimension, as it the 

preeminent proxy for phytoplankton abundance and can be estimated relatively easily by 

satellites and in-situ sensors. Fluorometry is a powerful in-situ mapping approach; 

however, variability in the fluorescence quantum yields requires local calibration data for 

deriving any quantitative estimate. This is difficult as changes in the fluorescence 

quantum yield reflect sensitivities to both the incident spectral irradiance and overall 

phytoplankton physiology (Kiefer 1973; Cullen 1982; Falkowski and Kiefer 1985), both 

of which can change on the timescale of hours to days (Falkowski and Raven 1997). 

Another potential variable might be colored dissolved organic matter (CDOM), 

which has been used successfully to calibrate mass transport (Aarup et al. 1996) 

(Højerslev et al. 1996). Most coastal systems reflect the optical contributions of 

numerous in-water constituents (water, phytoplankton, CDOM, detritus, and sediment). 

This optical complexity compromises the accuracy of the satellite derived products (Kirk 

1994; Mobley 1994); however, this complex matrix of materials provides a potential 

library of parameters that might be effective for discriminating water types if methods 
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could be developed that provide reliable estimates of the optically significant constituents 

present. 

Significant effort over the last decade has focused on measuring the spectral 

dependency of the in situ inherent optical properties (IOPs). The reliability in situ 

instrumentation that can measure the spectral IOPs is increasing (Pegau et al. 1995) 

(Chang and Dickey 1999; Schofield et al. 1999; Twardowski et al. 1999; Boss et al. 

2001). A major advantage of these parameters is that they can be inverted to provide 

weights for optically active components (e.g., water, colored dissolved organic matter 

(CDOM), phytoplankton, detritus, sediment, etc.). These optical weights are proportional 

to component concentration thus making them useful for elucidating the fine scale 

structure of the marine environment that can change significantly on hourly time scales 

(Roesler and Perry 1995; Chang and Dickey 1999; Schofield et al. 1999; Gallegos and 

Neale 2002). These inversion techniques are often based on estimating the total 

absorption using generalized spectral absorption shapes for one or more of the individual 

absorbing components or using absorption ratios of different wavelengths that vary in a 

predictable way according to the components present. While promising in theory, the 

accuracy of these inverted measurements have not been systematically assessed over the 

wide optical gradients present in the nearshore coastal ocean. Furthermore, the 

performance of inversion techniques that do not require any ‘‘optimized’’ local in-situ 

data to derive the generalized shapes has yet to be assessed. Ideally, minimal ‘‘local’’ 

tuning should be applied to these inversion techniques as this would allow for a ‘‘global’’ 

mechanistic approach, which is particularly important in complex coastal waters where 

local empirical relationships are likely to be extremely variable. 
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In this manuscript, we assess the application of a simple optical inversion method 

using off-the-shelf oceanographic equipment for deriving optical parameters and assess 

the utility of the derived optical parameters to differentiate water types in the coastal 

ocean. Our goal is to assess how much information can be inverted from absorption data 

given a fixed number of wavelengths, which can then be used to determine fine scale 

environmental structure of the coastal environment. 

2.3. Methods 

2.3.1. Field Data 

The field efforts were conducted at the Long-term Ecosystem Observatory (LEO) 

off the central coast of New Jersey (Glenn et al. 1998; Glenn et al. 2000; Schofield et al. 

2002) during the ONR-sponsored Hyperspectral Coastal Ocean Dynamics Experiments 

(HyCODE) and the Coastal Ocean Modeling and Observation Program (COMOP). The 

LEO system is a highly instrumented 30 by 30 km research site that represents a coupled 

model/observation system where real-time data and model forecasts are provided to 

optimize field sampling. For bio-optical research, one advantage of the field site is that it 

ranges from very turbid estuarine waters to relatively clear offshore waters within the 30 

km research box. These optical gradients reflect the variable contributions of many 

optically active constituents such as phytoplankton, sediments, CDOM, and detritus. 

The standard shipboard transects consisted of several 15–25 km cross-shelf 

transects. Specific transect lines and the locations of the stations were determined by the 

real-time data from ocean forecast models, ships, and satellites focused on characterizing 

coastal upwelling dynamics (Schofield et al. 2002). At each station, vertical profiles of 

optical and physical data were collected using an integrated bio-optical package. The bio-
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optical package consisted of a WET Labs Inc. absorption/attenuation meter (ac-9), a 

Falmouth CTD, a profiling Satlantic spectral radiometer, and a HOBI Labs backscatter 

sensor (Hydroscat-6). The measurements of the inherent optical properties used in this 

study were collected using the standard nine wavelengths (412, 440, 488, 510, 555, 630, 

650, 676, and 715 nm) of the WET Labs Inc. ac-9. At each station, the instrument was 

lowered to depth to remove air bubbles and the instrument was allowed to equilibrate 

with ambient temperature before data were collected. Only data from the upcasts were 

utilized. Data were averaged into 0.25 m depth bins for all subsequent analyses. The 

instruments were factory calibrated prior to the field season. Manufacturer recommended 

protocols (http://www.WETLabsInc.com/otherinfo/ugftp.htm) were used to track 

instrument calibration throughout the field season. This included clean water, 

temperature, and salinity calibrations. Whenever possible daily water calibrations were 

conducted; however, sampling schedules did not always allow for a daily calibration. 

Under these circumstances the most recent water calibration was used. It should be noted 

that this period without a calibration was at most three days.  

A CDOM absorption mapping system was installed on the ship (Kirkpatrick et al. 

2003), which consisted of a liquid waveguide capillary cell (LWCC, World Precision 

Instruments, Inc.) coupled to a fiber-optic spectrometer (S2000, Ocean Optics, Inc.) and a 

fiber-optic xenon flash lamp (PS-2, Ocean Optics, Inc.). Water was pumped by miniature 

peristaltic pump (P625, Instech Laboratories, Inc.) through size fractionation and cross-

flow filters (MicroKros, Spectrum Laboratories, Inc.) and then through the LWCC for 

optical density spectra measurements. A continuous underway water supply was provided 

by tapping the flow through the ship’s fire suppression system.  
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At each ship occupied station, water was collected with Niskin bottles from both 

surface and bottom waters. Aliquots were filtered, under low vacuum (<10 cm Hg), 

through GF/F (Whatman) glass fiber filters to concentrate the particles for pigment and 

absorption determinations. Filters were placed into snap top vials and quick frozen in 

liquid nitrogen. Samples were stored at –80ºC until later analysis. Filters were analyzed 

for photosynthetic and photoprotective pigment complements were determined using 

high-performance liquid chromatography (HPLC) according to standard procedures 

(Wright et al. 1991). Filter pad absorption was measured on a laboratory 

spectrophotometer and spectra were corrected for the path length amplification factor 

(Roesler 1998). Detrital absorption was determined by methanol extraction of particulate 

material (Kishino et al. 1985). The detrital absorption was subtracted from particulate 

absorption to provide an estimate of phytoplankton absorption. For discrete CDOM 

spectra, water was filtered through a 0.2 micron Nucleopore filter, and measured on a 

spectrophotometer using a 5 cm long path length cuvette. 

A second in-situ data set was collected using a two bottom-mounted nodes with 

profiling instrument packages. These nodes (Node B and Optical Profiler) were located 

approximately 4 km offshore in 13 m of water at 39°27.41 N, 74°14.75 W and collected 

data from Julian Day 202-215, 2000. Data measured by these profilers streamed directly 

to the Rutgers University Marine Field Station (RUMFS) in real time via an electro-

optical cable, where it was processed and visualized. Node B included a Sea-Bird CTD 

mounted with a WET Labs chlorophyll fluorometer, which sampled at 2 Hz and was 

profiled at a vertical rate of 2 cm s-1 at regular intervals. The Optical Profiler included a 

WET Labs nine wavelength absorption/attenuation meter (ac-9) (412, 440, 488, 510, 532, 
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555, 650, 676 and 715 nm), which sampled at 8 Hz, and a two wavelength 

backscatter/fluorometer HOBI Labs HydroScat-2 (470 nm and 676 nm) that sampled at 2 

Hz. The Optical profiler also profiled at a rate of 2 cm s-1. 

2.3.2. Inversion of in situ Absorption Data 

  The optical signature inversion method (OSI) uses measured spectral absorption 

data collected from the ac-9 to calculate optical weight specific absorption coefficients or 

material present in the water column. The OSI model calculates optical weight specific 

coefficients (wi) and exponential slopes (s, r) using a nonlinear, constrained least-squares 

regression according to 

),(),()()()()( 54332211 rawsawawawawa DetritusCDOMPhytoPhytoPhytototal λλλλλλ ++++=    (2.1) 

where )(λtotala  is the total spectral absorption measured with the ac-9 (note that ac-9 

provides an absorption that has already subtracted the contribution due to water), 

)(1 λPhytoa , )(2 λPhytoa , and )(3 λPhytoa are generalized spectral absorption of chlorophyll a-c, 

phycobilin, and chlorophyll a-b containing phytoplankton, respectively, and ),( saCDOM λ  

and ),( raDetritus λ  are the spectral absorption of CDOM and detritus (Figure 2.1). The 

CDOM absorption (and detritus absorption) can be described as an idealized curve as a 

function of wavelength and exponential slope (Kalle 1966; Bricaud et al. 1981; Green 

and Blough 1994), 

[ ])412(exp)( nmsaa CDOMCDOM −•−= λλ                                          (2.2) 

The exponential s parameter (unitless) is dependent on the composition of the CDOM 

present and is highly variable (Carder et al. 1989; Roesler et al. 1989). Therefore it was 

necessary to allow the CDOM and detritus exponential slopes to vary to achieve 

 



  16

reasonable estimates. The initial exponential slopes of CDOM were set to 0.010. The 

detritus exponential slope was initially set to 0.008. The slopes of the detrital curves (r) 

are lower (Kirk 1994) and detritus is described by equation (3), 

[ ])412(exp)( nmraa DetritusDetritus −•−= λλ                                          (2.3) 

  The values of , , ,  and  are non-spectrally dependent scalar 

coefficients of these input spectra. We used fixed absorption spectra measured on 

laboratory cultures in order to ensure that inversion was completely independent from 

any spectral curves encountered in the field. Spectral phytoplankton curves were of 

averages of high-light- and low-light-acclimated phytoplankton spectra that were 

normalized to absorption at 676 nm. The spectral library used was taken from  (Johnsen 

et al. 1994) (Figure 2.1). While not optimal, we believe it was reasonable since the first-

order determinant of spectral optical signals reflects the overall concentration of material 

rather than spectral characteristics of the materials present (Barnard et al. 1998).  

1w 2w 3w 4w 5w

We used two different inversion approaches, one with more constraints than the other. 

The minimal constraint OSI (OSIm) only required that all solutions be positive (equation 

(4)), that CDOM and detritus absorption weights were equal in the red wavelengths of 

light (equation (5)), and that the CDOM exponential slope is steeper than the detrital 

slope (equation (6)). The assumption that the CDOM and detritus absorption is equal is  
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Figure 2.1. Input spectra used to invert the in situ absorption values measured by the ac-9 

using the OSI model. Phytoplankton spectra are averages of high-light and low-light 

adapted phytoplankton from Johnsen et al., 1994. Phytoplankton group one represents 

chlorophylla-c containing classes of Bacillariophyceae, Dinophyceae and 

Prymnesiophyceae. Phytoplankton group two represents the phycobilin containing class 

Cryptophyceae. Phytoplankton group 3 represents the chlorophylla-b containing classes of 

Chlorophyceae, Prasinophyceae and Eugelnophyceae. CDOM and detritus spectra are 

idealized exponential functions.  
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artificial but we know that CDOM and detritus absorption is very low in the red 

wavelengths as both are exponentially decreasing curves. There are two artificial ways to 

ensure that the CDOM and detritus absorption do not dominate the red light absorption 

where phytoplankton absorption dominates. One method, more commonly used, is to set 

the magnitude of CDOM and detritus red absorption to a fixed low value. The second 

method is to anchor both curves to each other in the red, which allows the exponential 

slopes and amplitudes to be determined largely by the blue wavelength absorption. This 

second method allows the red light absorption of CDOM and detritus to be variable. The 

second OSI method (OSIc) added constraints so that phytoplankton absorption dominated 

in the red wavelengths (equations (2.7) and (2.8)), and that minor phytoplankton 

communities in these waters (here chlorophytes) were never dominant (equations (9) and 

(10)). Specifically, the constraints on the OSI optimizations were: 

0),(),,(),(),(),( 54332211 ≥rawsawawawaw DetritusCDOMPhytoPhytoPhyto λλλλλ  (2.4) 

)()( 3311 λλ PhytoPhyto awaw ≥                                                                        (2.5) 

)()( 3322 λλ PhytoPhyto awaw ≥                                                                       (2.6) 

0),676(),676()650( 5411 ≥+≥ rnmawsnmawnmaw DetritusCDOMPhyto           (2.7) 

0),676(),676()650( 5422 ≥+≥ rnmawsnmawnmaw DetritusCDOMPhyto          (2.8) 

),676(),676( 54 rnmawsnmaw DetritusCDOM =                                               (2.9) 

rs ≥                                                                                                      (2.10) 

These assumptions were based on 5 years of experience in coastal New Jersey 

waters spanning both the nearshore and offshore. It should be noted that the OSIm and 

OSIc inversion methods using the same assumptions have been successfully used in both 
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the oligotrophic Gulf of Mexico and the southern basin of Lake Michigan (unpublished 

data). When the OSI method (OSIm and OSIc) did not converge on a solution, the data 

were omitted from the later analysis (<5% of the total New Jersey data set). This 

generally reflected noise in the ac-9 data most often in near surface waters, presumably 

related to air bubbles, which interfered with natural inflections in the absorption curve. 

Of all the constraints, the requirement that green algae were always less abundant than 

chlorophyll c and phycobilin containing algae was admittedly the most artificial. 

However, running the inversion without the constraint greatly compromised the efficacy 

of the inversion for the overall phytoplankton absorption spectra. Phytoplankton pigment 

concentrations from discrete measurements during this study also confirmed that this 

assumption was valid as it was also confirmed a background population of green algae 

was detectable (Moline et al. 2004). To assess the stability of the OSI, random noise was 

introduced into the ac-9 spectra. For this analysis we added +0.005 m-1 to the data 

randomly across all wavelengths. Results indicated that there was no spectral bias and the 

quantitative impact was less than 1%. 

 

2.4. Results and Discussion 

2.4.1. Verification of the Derived Optical Products 

OSI-derived particulate, detrital, and phytoplankton loads were compared to three 

independent data sets that included stimulated chlorophyll fluorescence, phytoplankton 

filter pad absorption measurements, and HPLC phytoplankton pigment concentrations. 

All three data comparisons suggested that the OSI method provided reasonable estimates 

of particulate, phytoplankton, detritus, and CDOM optical weights. 

 



  20

2.4.2. Fluorescence 

The ac-9-derived phytoplankton absorption and stimulated in situ chlorophyll 

fluorescence were positively and linearly related to each other (Figure 2.2.). The derived 

phytoplankton absorption was significantly correlated (p < 0.05) with fluorescence and 

could explain 54% and 61% of the variance in the summers 2000 and 2001, respectively. 

The linear relationship between the fluorescence and derived phytoplankton weight was 

notable given that the majority of the data were collected in Case 2 waters where 

phytoplankton are not necessarily the dominant optical signal. In addition a significant 

proportion of the phytoplankton communities were probably light saturated for 

photosynthesis, thus fluorescence quenching was also significant and contributed to the 

variance in the correlation between the OSI-derived phytoplankton optical weights and 

chlorophyll fluorescence measurements. Xanthophyll pigment cycling (Demmig-Adams 

1990; Owens et al. 1993) and photoinhibition (Prasil et al. 1992; Critchley 1994; 

Nickelsen and Rochaix 1994) often results in almost a 100% change in fluorescence 

quantum efficiency (Falkowski and Kiefer 1985; Kroon 1994). The variable fluorescence 

quantum yield compromises the accuracy of using fluorescence to estimate chlorophyll a 

biomass, the OSI phytoplankton estimates may be more desirable than the commonly 

used chlorophyll fluorometer because it is not subject to physiological variability. IOP 

sensors are now becoming operationally viable for the wider oceanographic community 

and inverted optical data will improve our ability for making quantitative biomass maps. 
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Figure 2.2. The relationship between chlorophyll a fluorescence measured with a HOBI 

Labs hydroscat-6 and the estimated phytoplankton weight during the summers of 2000 

and 2001. The phytoplankton weight was inverted from ac-9 data using the OSIc 

approach. The R2 for summer 2000 and 2001 are 0.54 and 0.61, respectively. 
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2.4.3. Filter Pad Absorption 

The OSI results were compared to 240 filter pad samples that spanned the period 

of the field effort (Figures 2.3 and 2.4). For OSIm, quantitative agreement with discrete 

samples for particulates was good with the R2 ranging from 0.8 to 0.5 for wavelengths 

lower than 680 nm except in the wavelengths associated with carotenoid and phycobilin 

absorption (530 to 600 nm) (Figure 2.3 A). The R2 dropped to 0.3 for wavelengths greater 

than 680 nm. The average slope between the measured and predicted absorption ranged 

1.2 to 0.5. Given the variance within the correlations, the average slope was rarely 

significantly different than one. The OSIm could account for 70% of the variance in 

measured phytoplankton spectra except for the wavelengths associated with phycobilin 

absorption at wavelengths spanning from 530 nm to 600 nm (Figure 2.3 B). The R2 

dropped for wavelengths greater than 680 nm. Average slopes between measured and 

predicted phytoplankton absorption were insignificantly different from one except in the 

low blue wavelengths (<415 nm) of light where phytoplankton absorption were 

overestimated by as much 20% (Figure 2.3 B). OSI-derived detritus spectra could 

account for 70% of the variance in the absorption in the blue wavelengths of light (Figure 

2.3 C), but the R2 dropped off at the higher wavelengths because of the low signal to 

noise ratio associated with the exponential decline in detrital absorption with increasing 

wavelength. The CDOM absorption was significantly overestimated. In the blue 

wavelengths, this over estimate was 35% but increased to a factor of 2 in the green 

orange wavelengths of light (Figure 2.3 D); however, the OSIm-derived CDOM 

absorption could account 88% of the variance in the measured CDOM absorption in the  
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Figure 2.3. Comparison of measured and (A) modeled particulate, (B) phytoplankton, 

(C) detritus, and (D) CDOM absorption using the minimal constraint OSI method.  The 

measured data represents absorption spectra made for either filter pads or dissolved 

organics on discrete samples.  The modeled data represents the predicted absorption 

spectra from the inverted from the ac-9 data.  Data were pooled for both years and was 

linearly regressed at each wavelength providing both the slope (dark line with gray area) 

and R2 (dark circles) for each wavelength.  The gray shadow around the slope represents 

the standard deviation. 
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Figure 2.4.  Comparison of measured and modeled (A) particulate, (B) phytoplankton, 

(C) detritus, and (D) CDOM absorption using the OSIc method.  The measured data 

represents absorption spectra determined from filter pads or discrete samples for colored 

dissolved organics.  Data were pooled for both years and were linearly regressed against 

measured absorption spectra at each wavelength providing both the slope (dark line with 

gray area) and R2 (dark circles) for each wavelength.  The gray shadow around the slope 

represents the standard deviation. 
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blue wavelengths of light. Similar to the detritus the R2 decreased with increasing 

wavelength because of decreasing signal to noise. For the OSIc the quantitative 

agreement between measured and modeled particulate spectra was good, with the R2 

ranging from 0.5 to 0.9 with low values associated with wavelengths greater than 680 nm 

(Figure 2.4 A). The slope between the measured and modeled particulate spectra ranged 

from 1.2 to 0.8 depending on wavelength (Figure 2.4 A) and the variance was reduced 

from the OSIm approach especially in the wavelengths associated with phycobilin and 

carotenoid absorption (530–580 nm). For the majority of the wavelengths, the deviations 

of the average slope from 1 were rarely statistically significant (Figure 2.4 A). 

Quantitative agreement decreased in the red wavelengths of light where signal was low. 

Results indicate that the derived particulate spectra could be quantitatively derived from 

the ac-9 with minor spectral biases despite that only idealized spectral absorption shapes 

were used. Like the particulate spectra, the agreement for the OSI and measured 

phytoplankton spectra were good (Figure 2.4 B). The largest mismatches were in the blue 

wavelengths of light but 70–80% of the observed variance in the measured spectra were 

described by the OSIc and as with the particulate spectra the errors were lower compared 

to the OSIm method. Quantitative estimates for detritus were good (Figure 2.4 C), but 

accuracy dropped in the higher wavelengths because of low detrital absorption. The OSIc 

method showed no improvements over the OSIm method for predicting CDOM 

absorption, with the overall CDOM absorption being overestimated significantly (Figure 

2.4 D). For both OSIm and OSIc the spectral slope of the CDOM was underestimated 

especially when discrete samples indicated high slopes (Figure 2.5). 
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In our approach, the input spectra for the OSI were based on laboratory data 

(Johnsen et al. 1994) and theoretical curves, so the OSI methods could undoubtedly be 

improved by customizing the input spectra for any particular location. Our goal, however, 

was to assess what could be derived using no local input data. The relative particulate 

spectra derived by the OSIc approach overestimated absorption at wavelengths of peak 

phytoplankton absorption (420–540 and 660–680 nm). This is consistent with the well-

documented package effect, where absorption spectra are ‘‘flattened’’ when pigment 

packaged within a cell (Morel and Bricaud 1986). The package effect is greatest in the 

wavelengths of maximal absorption and increases with increasing cell size and cellular 

concentration of pigment. In higher-chlorophyll waters nearshore, water samples revealed 

high populations of large net diatoms (Moline et al. 2004), which are greatly affected by 

the pigment package effect (Bricaud et al. 1995). Filter pad measurements support the 

hypothesis that phytoplankton were highly packaged as the specific absorption at 676 nm 

was consistently lower (0.017 m2 mg chl a-1) than in low-chlorophyll offshore waters 

where populations were dominated by picoplankton. Therefore as the majority of the data 

collected represented nearshore stations, the package effect could account for much of 

spectral differences in the derived spectra. The pigment package effect has a 

proportionally larger impact on the wavelengths of maximum phytoplankton absorption. 

The spectral mismatch resulting from the highly peaked phytoplankton 

contributed to the overestimated CDOM absorption. This is associated with the high 

pigment absorption in the blue and red wavelengths of light. Given the OSI requirement 

that phytoplankton dominate the red absorption peak, a flatter phytoplankton input  
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Figure 2.5.  Comparison of CDOM spectral absorption estimated by the OSIc and 

measured with a flow through Breve-buster (Kirkpatrick et al. 2003) and on a discrete 

sample. 
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absorption spectra would result in 1) lower the overall CDOM and detrital estimates in 

the blue wavelengths and 2) steeper estimates in the CDOM exponential slope. This 

would argue that laboratory spectra should not be used in the inversion of field data; 

however, it was the highly peaked pigment shoulders that allowed phytoplankton 

community composition to be determined. Until more wavelengths are available to allow 

researchers to characterize both composition and pigment-packaging, researchers will be 

forced to prioritize their needs. This shortcoming will improve in the coming years as the 

community is actively developing in-situ hyperspectral sensors. 

2.4.4. Phytoplankton Pigments 

To further assess the phytoplankton absorption inversion estimates, we examined 

how well the presence of the three spectral classes of phytoplankton could be determined 

(Figure 2.6). Using accessory pigment data and the ChemTax program (Mackey et al. 

1996; Mackey et al. 1998) we estimated the proportion of total chlorophyll a associated 

with the three major spectral classes of phytoplankton. The inverted phytoplankton 

estimates from the OSIc method were significantly correlated (p < 0.00) with the 

ChemTax estimates of chlorophyll c and phycobilin-containing phytoplankton (Figure 

2.6 A). There was no success in predicting the distribution of chlorophyll b, but this is 

consistent with the independent findings that they were a rare component of the 

phytoplankton community at LEO and thus had insignificant contributions to the optical 

signals (Moline et al. 2004). The OSIm approach had no success in predicting the 

phytoplankton community composition.  

Overall results from the OSI show that currently available off-the-shelf 

technology can provide reasonable estimates of the major optical constituents (CDOM,  
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A) 

Figure 2.6. Comparison of the amount of phytoplankton absorption and measured 

chlorophyll a associated with the three major spectral classes of phytoplankton during 

summers 2000 and 2001.  The amount of chlorophyll a associated with each spectral 

class of phytoplankton was calculated via CHEMtax using the accessory pigment data 

measured via high performance liquid chromatography.  A) Relationship between 

measured chlorophyll a to the OSIm and OSIc procedures.  B) The absorption of 

chlorophyll c containing algae estimated with the OSIm and the chlorophyll a associated 

with chromophytic algae.  C) The absorption of phycobilin containing algae estimated 

with the OSIm and the chlorophyll a associated with phycobilin containing algae. D) The 

absorption of chlorophyll c containing algae estimated with the OSIc and the chlorophyll 

a associated with chromophytic algae. E) The absorption of phycobilin containing algae 

estimated with the OSIc and the chlorophyll a associated with phycobilin containing 

algae. F) The absorption of chlorophyll b containing algae estimated with the OSIc and 

the chlorophyll a associated with chlorophytic containing algae. 
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detritus, particles, and phytoplankton) in Case 2 waters. While the precise phytoplankton 

community composition was difficult to delineate, the most dramatic gradients in 

phytoplankton composition could be described given constraints that maximized the 

phytoplankton absorption in the red wavelengths of light. Improving this and similar 

inversion methods will require spectral resolutions greater than nine wavelengths, ideally, 

at the wavelengths associated with phytoplankton accessory pigments (Jeffrey et al. 

1997). Increased spectral resolution would also allow a variety of spectral pattern 

recognition methods to be applied (Millie et al. 1997; Schofield et al. 1999) (Kirkpatrick 

et al. 2000; Millie et al. 2002), which will increase our ability to discriminate the major 

spectral classes of phytoplankton and even specific phytoplankton taxa.  Many of these 

approaches require spectral resolutions of 2–3 nm (Roelke et al. 1999) so developing 

hyperspectral instrumentation will be key to improving optical discrimination techniques 

for coastal waters. Despite shortcomings, this approach appears very promising in 

describing the major absorbing components at LEO.  

2.4.4. Spatial and temporal coherence of derived optical parameters to hydrography 

 The high-resolution time series of hydrographic and optical data provided by the 

profilers allowed us to examine the spatial and temporal coherence of the derived optical 

parameters to the general hydrography of the coastal ocean. During the time period of 

their deployment, the density record of these profiles (Figure 2.7 A) indicated there 

where three major water column states which had radically different water column 

structures; i) a coastal upwelling event on days 203-207, ii) a fresh water river plume, 

presumably from the Hudson River (Johnson et al. 2003) on days 210-215, and  
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Figure 2.7. Time series of in situ data taken by the profilers during the experiment. Panel 

A shows density structure with water mass boundaries (white) defined by cluster analysis 

(see text). Panel B is the ratio of scattered and backward scattered light. Panel C is 

chlorophyll fluorescence measured by the optical profiler. Panel D is the OSI derived 

calibrated relative phytoplankton abundance. Optical and biological parameters have 

similar patterns as the hydrographic structure.  

 

 

 

 

 

 



  32

 

Figure 2.8. Time series of inverted in situ absorption data taken by the optical profiler 

during the experiment. Panel A is the relative abundance of CDOM, while Panel B is the 

exponential slope of the CDOM curve. Panel C is the relative abundance of detritus while 

Panel D is the exponential slope of the detritus curve. Derived optical properties show 

distinct characteristics of the hydrographic structure during the experiment. 
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iii) a well mixed regime on days 207-210. These regimes were confirmed as being 

statistically different from each other by a MANOVA analysis of the paired salinity and 

temperature records from the profilers (Pillai Trace approx. F = 2988.747, p = 0.000). 

The density, optical backscattering, and chlorophyll fluorescence (Figure 2.7 A-C) are all 

independent estimates of water column structure to which the absorption derived optical 

parameters could be compared. (Figure 2.7 D, 2.8 A-D). 

The spatial-temporal pattern of derived phytoplankton abundance matches that of 

chlorophyll fluorescence very closely, while still showing the overall patterns related to 

the passage of the three major water masses. In addition, the backscattering ratio 

generally indicates that the particles associated with the river plume are larger than 

particles during the upwelling event. This suggests that smaller, non-absorbing particles 

are associated with the upwelled water as opposed to the large absorbing particles 

(phytoplankton) in the river plume. CDOM and detritus abundance, are, as expected, 

significant absorbing components of the river plume. In addition, the spectral slope of the 

CDOM signature is generally lower in the river plume as compared to that of the 

upwelled water. In coastal regions this is a typical characteristic of terrestrial derived vs. 

marine derived CDOM. Therefore, despite some of the weak wavelength specific 

correlations between the derived optical parameters and discrete samples, the derived 

products show the same spatial and temporal patterns as the density, backscattering and 

chlorophyll fluorescence indicating that the derived products are effective in capturing 

and characterizing the even the fine scale environmental variability. 
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 2.5. Conclusions 

Inversion of absorption data measured using off the shelf technology is possible 

and shows great promise. We validated our inversion procedure with other optical 

environmetnal optical measurements (chlorophyll fluoresence, CDOM absorption), 

discrete filter pad absorption, and with HPLC analysis and showed that these and similar 

inversion approaches can be applied to optically complex Case 2 waters. Furthermore, the 

spatial and temporal distribution of the derived parameters is coherent with other 

independent optical and hydrographic parameters. Therefore, we feel this approach has 

great potential utility to extend tradional water mass and environmental structure analysis 

into multidimensional space (Tomczak 1999) in complex coastal waters. This will 

provide the marine ecologist a key technology to map specific phytoplankton taxa over 

ecologically relevant spatial temporal scales.  
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Chapter 3 

3.0. Bioinformatic Approaches for Objective Detection of Water Masses on 

Continental Shelves 

3.1. Abstract 

 As part of the 2001 Hyper Spectral Coupled Ocean Dynamics Experiment 

(HyCODE) and the 2005 Lagrangian Transport and Transformation Experiment 

(LaTTE), sea surface temperature and ocean color satellite imagery were collected for the 

continental shelf of the Mid-Atlantic Bight. The imagery collected in 2001 was used to 

develop a water mass analysis and classification scheme that objectively describes the 

locations of water masses and their boundary conditions. This technique combines 

multivariate cluster analysis with a newly developed genetic expression algorithm to 

objectively determine the number of water types in the region based on ocean color and 

sea surface temperature measurements. Then, through boundary analysis of the water 

types identified, the boundaries of the major water types were mapped and the differences 

between them are quantified using predictor space distances. We then independently 

validate this approach during the 2005 LaTTE experiment with salinity and inorganic 

nutrient measurements. Results suggest that this approach can track the development and 

transport of water masses and that the boundaries of these water masses often constitute 

represent large changes in inorganic nutrient concentrations. Because the analysis 

combines the information of multiple predictors to describe water masses it is an 

effective tool in detecting water masses not readily recognizable with temperature or 

chlorophyll alone.  
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3.2. Introduction 

Water mass analysis is an active area of research because of their potential utility 

for describing large scale ocean circulation (Warren 1983), assessing the impact of river 

plumes (Højerslev et al. 1996), understanding basin scale biogeochemistry (Broecker et 

al. 1985). Water masses are classically defined as waters with common formation and 

origin having similar conservative properties such as temperature and salinity. However, 

it should be noted that this conservative requirement means that for temperature and 

salinity to remain conservative within a mass of water, the water mass cannot be in 

contact with the surface ocean or its source region. The introduction of the T-S diagram 

was the first quantitative approach to defining water masses based on their conservative 

properties and has been a mainstay in the oceanographic community (Hellend-Hansen 

1916). Since that time, oceanographers have used chemical isotopes to further study the 

circulation of water masses in the ocean interior (Broecker and Peng 1982). In the surface 

ocean where temperature and salinity are not considered conservative, injections of dyes 

and SF6 have been successfully used to track the circulation and subduction of surface 

features because the presence of SF6 can be considered conservative compared to some of 

the short-time scale process in the surface ocean (Upstill-Goddard et al. 1991); however, 

this type of research is costly and can effectively cover only relatively small space scales. 

To assess the impact of broad scale surface features, the key is to develop proxies that 

change over larger time scales than the processes being studied.  

 To a certain degree, optical oceanographers have addressed the issues of water 

mass identification in the surface ocean by classifying them based on their optical 

properties. Efforts by (Jerlov 1968) classified waters into nine water types. These water 
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types were further analyzed by (Morel and Prieur 1977) and classified into the widely 

accepted Case 1 and Case 2 waters. These classifications have been an extremely useful 

tool. Water types are different than water masses in that water types occupy only similar 

predictor space while water masses occupy similar predictor and physical space 

(Tomczak 1999). A major objective over the last few decades has focused on 

understanding global and basin scale circulation, which operate over time scales of years 

to thousands of years. Therefore these processes require tracers that are relatively 

conservative over the same time scales (i.e. salinity). However, if the time scale of 

interest in detecting and tracking near surface water masses is on the order of hours to 

days as it often is in coastal regions, optical predictors potentially provide additional 

dimensions of discrimination to traditional temperature and salinity analysis. This type of 

optical approach has been demonstrated by tracking river influence containing 

anthropogenic pollutants (Højerslev et al. 1996). In addition to tracking anthropogenic 

pollutants, the identification of frontal regions between water masses has been used to 

identify important areas of mixing and biological activity (Claustre et al. 1994).  

 Although simple in concept, the inclusion of optics as a water mass tag presents a 

problem in determining the uniqueness of a water mass. Because water mass 

classification has traditionally relied upon hydrographic predictors only, there exists an 

intuitive sense, based on a century of experience, for defining significant differences in 

temperature and salinity predictors before discriminating between water masses. While 

these discriminations are inherently subjective, the inclusion of optical predictors only 

confounds the already subjective interpretation. This problem is not unique to 

oceanography, but a fundamental problem for any scientific field that assigns categories 
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or identifiers to a known data continuum. Therefore, if optical predictors are to be used 

effectively in water mass analysis and identification, an objective mathematical construct 

is needed to for proper quantitative discrimination of water masses based on the 

similarity of water types (Martin-Trayovski and Sosik 2003). 

 One branch of science that has had to develop means to overcome the problems 

associated with assigning categories to a known continuum is the field of evolutionary 

and molecular biology. These problems manifest themselves in a variety of ways such as 

uncertainties in phylogenetic trees, species determination (Hey 2001; Wu 2001; Noor 

2002), annotations of genomes (Meeks et al. 2001) and the expression of genes (Yeung et 

al. 2001). This problem has become more complex with technological breakthroughs 

such as DNA microarrays and automatic sequencers, and through necessity, the rapidly 

advancing field of bioinformatics has endeavored to produce several objective 

mathematical constructs to transform a data continuum into meaningful categories. This 

manuscript applies techniques developed by the bioinformatics field and adapts them for 

the use of objective water mass analysis and classification in a coastal region. We present 

a mathematical construct of a water mass classification method and apply it to the Mid-

Atlantic Bight using optical and temperature parameters measured by satellite. 
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3.3. Methods 

3.3.1. HyCODE 

During the 2001 HyCODE experiment at the Long-term Ecosystem Observatory (LEO) 

off southern New Jersey, daily SeaWiFS and AVHRR passes were collected with a L-

Band data acquisition system at approximately 1 km resolution over an area defined at 

38.50°N – 41.50°N latitude and 76.00°W – 71.00°W longitude (Figure 3.1). These 

satellites were used as an adaptive sampling tool during the experiment so that data of the 

relevant hydrographic features in the region could be collected. Pixels from the single 

daily SeaWiFS pass were matched to the least cloud covered AVHRR pass using latitude 

and longitude. Morning AVHRR passes were used to avoid the effects of diurnal solar 

heating. Cloud removal was accomplished by adjusting the cloud coefficient in the 

MCSST algorithm. SeaWiFS data were processed using the DAAC algorithm. For this 

study, matched satellite passes from July 14, July 21, July 31, and August 2 2001 were 

chosen because of relatively little cloud cover. Each composite matrix of SeaWiFS and 

AVHRR imagery had between 75,000 and 105,000 cloud free pixels. Each composite 

matrix was sub-sampled at 6 km resolution for the analysis to increase computational 

speed, and to match the resolution of the surface current measurements in the region. 

These data were analyzed in a multi-step process that identifies predominant water mass 

boundaries and the gradients between water masses (Figure 3.2). 

3.3.1.1. Data and Standardization 

The data used from the composite matrix of AVHRR and SeaWifs in this study 

were sea surface temperature (SST ºC), remote sensing reflectance measured at 490 nm 

(Rrs(490)) and at 555 nm (Rrs(555)) (Figure 3.1). Remote sensing reflectance is a quasi- 
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Figure 3.1. Temperature and reflectance maps on 7/14, 7/21, 7/31 and 8/02 2002 in this 

analysis. A warm core ring is evident on 8/02 as a nearshore optically dominated water 

mass formed nearshore. The white line is the coastline and the black indicates land or 

cloud. 
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inherent optical property defined as the ratio of upwelling radiance (W m-2 sr-1) to 

downwelling irradiance (W m-2) and has units of sr-1. These data were chosen for two 

reasons. First, they are used in chlorophyll and primary productivity estimations. 

Secondly, a principal components analysis using the correlation matrix on the combined 

four-day data set including SST and remote sensing reflectance at 412 nm, 443 nm, 490 

nm, 510 nm, 555 nm and 670 nm indicated that three linear combinations described 

96.6% of the variance of the data. SST, Rrs(490) and Rrs(555) were the largest contributors to 

these linear combinations. This suggests that the majority of the waters in this analysis 

are Case 1 and that the other remote sensing reflecting channels are highly correlated and 

would not add much discrimination power. Note however, the methods described in this 

paper are not limited to three predictors or these specific satellite products; however in 

this region they represented the most useful data. Work in other areas may require some 

similar preliminary analysis. SST, Rrs(490) and Rrs(555) were standardized for this analysis 

by subtracting their respective means and dividing by their respective standard deviations 

from the combined data from the four days. This process weighted each predictor equally 

for any potential water mass present.  

3.3.1.2. Clustering Algorithms 

 Four different clustering algorithms were used simultaneously in this analysis 

(Table 3.1). These algorithms were two agglomerative or hierarchical clustering 

algorithms, a K-means and a fuzzy C-means algorithm (Quackenbush 2001). From the 

sub-sampled data set, each pixel (observation) was projected into three dimensional 

standardized predictor space. The agglomerative clustering algorithms grouped 

observations in three dimensions according to their Euclidian distance in standardized  
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Figure 3.2. Flow diagram of this analysis. This analysis assimilates sea surface 

temperature as well as two remote sensing channels for all four days. The data is 

standardized according to the mean and variance of the combined four day data set to 

make them comparable. Water types for each day are detected using four clustering 

algorithms, ACL, AWL, K-means and C-means. These results are combined into a Figure 

of Merit, where an average slope function (ASF) and threshold of acceptable flatness 

(TAF) is computed. These two predictors give a range of reasonable water types. For 

each solution for each day, the boundaries are plotted and coincident boundaries are the 

most prevalent indicating similar structures found by different clustering algorithms. This 

indicates that the boundaries associated with this water type indicate a prevalent water 

mass. Finally, the predictor space distance is measured between each data point, to 

determine how different the water is on either side of each boundary. High values 

indicate a very strong boundary between water masses. 
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predictor space. The agglomerative clustering types grouped standardized predictor data 

hierarchically from n to 2 clusters from closest to furthest in predictor space where n is 

the number of observations. The difference between how the two agglomerative 

clustering algorithms treated the data is based on how the data was grouped in predictor 

space. The first agglomerative clustering type grouped data according to complete 

linkage (i.e. Agglomerative Complete Linkage or ACL), which determined that two 

clusters of data ought to be joined to a single cluster based on the maximum distance 

between cluster edges. The second agglomerative method grouped data according to 

Ward’s linkage (i.e. Agglomerative Ward’s Linkage or AWL) (Ward 1963). This method 

calculated the total sum of squared deviations from the cluster means, and joins clusters 

to minimize the increase of the total sum of squares deviation. The K-means clustering 

algorithm is a divisive clustering algorithm, which requires a user-specified cluster 

number. This algorithm initialized cluster centers randomly and grouped data until the 

within-cluster sum of squares is minimized for the number of clusters specified (Hartigan 

and Wong 1979). The fuzzy C-means clustering algorithm is similar to the K-means 

clustering algorithm except that through the use of fuzzy logic and sequential competitive 

learning, observations are clustered (Chung and Lee 1992).  

While there are dozens of clustering schemes, these particular algorithms were 

chosen based on performance from the literature. (Yeung et al. 2001) observed that on 

real data, using agglomerative clustering with single linkage (clusters joined into a single 

cluster based on the minimum distance between clusters) did not produce sensible 

clusters of data. Rather, the K-means clustering algorithm performed very well. The ACL 

algorithm has been cited as very useful in producing tightly grouped clusters  
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Table 3.1. Description of the four types of clustering algorithms used. 
Clustering Algorithm Description 

Agglomerative Complete 
Linkage (ACL) 

Data are hierarchically grouped from n to 2 clusters. Data 
are grouped from closest to furthest based on Euclidian 
distance in predictor space. The distance between clusters is 
measured based on the maximum distance between cluster 
edges in predictor space. 

Agglomerative Ward’s 
Linkage (AWL) 

Data are hierarchically grouped from n to 2 clusters. Data 
are grouped at each step to minimize the variance of the 
clusters. 

K-Means 

Data are divided from 1 to k clusters where k is the number 
of clusters requested by the user. To form k clusters, k 
cluster centers are randomly initialized in predictor space. 
Data are then assimilated into cluster centers as to minimize 
the within cluster sum of squares.  

Fuzzy C-Means Similar to K-means, except this algorithm clusters initial 
cluster centroids through competitive learning.  

 
(Quackenbush 2001). In our opinion this is a good feature for water type identification 

because there is an emphasis in grouping only the most similar data. The choice of the 

AWL algorithm was related to previous work done by (Oliver et al. 2004), in which a 

priori knowledge of the number of water masses present fit well with the results of the 

AWL algorithm. The fuzzy C-means clustering algorithm was chosen based on the 

results of (Chung and Lee 1992), which showed that the competitive learning done by the 

fuzzy C-means algorithm produced sensible clusters. 

3.3.1.3. Figure of Merit 

 A major difficulty in cluster analysis is determining how many clusters (or water 

types in this case) should be used to describe a data set as each observation could 

theoretically represent its own cluster. Therefore a means to analyze this structure 

objectively was required to identify water types in predictor space. With the advent of 

rapid gene sequencing and gene expression chips, the field of bioinformatics has 

endeavored to produce and continues to refine several algorithms that analyze gene and 
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expression data in order to find patterns of gene expression that are linked to a variety of 

factors. (Yeung et al. 2001) developed and validated one such method which essentially 

computes the RMS deviation between individual observations and the mean of the cluster 

they belong too for a given algorithm. This statistic is called the Figure of Merit ( ). 

Although this algorithm was designed to calculate the difference between expression 

vectors of genes, here it is used to analyze the inherent structure of clusters in predictor 

space detected by the clustering algorithms. In this case, “gene” expression vectors were 

standardized values of SST, R

FOM

rs(490) and Rrs(555) at each pixel. The  statistic was used 

to analyze the inherent structure defined by the clustering algorithms. The equation used 

in this study to calculate the  was: 
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where c is one of the four clustering algorithms,  n is the total number of observations,  i 

=1-3 indexes the three variables measured at each pixel, j is the cluster number, k is the 

number of clusters each data set was divided into, l is a specific observation of the total 

number of pixels m in cluster j,  is the specific standardized observation of predictor i 

in cluster j, and 

ijla

ija is the mean for each cluster. This function is essentially a measure of 

the variation within clusters as a function of cluster number. 

 Ideally, the FOM function will exhibit a distinct “elbow”, decreasing rapidly at 

small k and much more slowly beyond a threshold k. This elbow represents the ideal 

cluster number (or number of water types in this case) for a data set because the deviation 

between cluster means and the individual observations in each cluster become very small. 

While the  statistic often show very distinct “elbows” in simulated data sets, real FOM
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data sets tend to show no distinct elbow for any of the clustering algorithms (Figure 3.3, 

Also see Figures 1 and 3 in (Yeung et al. 2001). In cases using real data, the  is best 

approximated by a power function of the number of clusters indicating that it is difficult 

to choose the ideal number of clusters. In this study, a threshold of acceptable flatness 

(

FOM

TAF ) of the was defined by calculating the normalized average slope function 

( ) of the  function at each cluster k for the four clustering algorithms 

using: 
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where is the maximum value for a specific cluster algorithm c. The )(max cFOM FOM

TAF was defined at the smallest cluster k where  < 0.01 (< 1% decrease in 

 relative to the maximum ) for three or more consecutive clusters. Based on 

our own observations in which k was allowed to approach n, an  value < 0.01 

indicates that the variance within each cluster no longer reduces appreciably with 

increasing cluster number. This established an upper bound for what we believed to be 

reasonable cluster numbers or water type assignments by the suite of clustering 

algorithms. For this study, k was limited to a maximum of 30 clusters, as the  value 

did not change significantly after this cluster number. 
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3.3.1.4. Boundary Analysis 

 One major difference between the clustering of a gene data set and a water mass 

data set is that clusters defined in a water mass data set occupy predictor space 

represented by standardized SST, Rrs(490) and Rrs(555) and physical space represented by 

latitude and longitude while a gene data set has no physical space representation. Water 

 



  47

mass definitions vary slightly, so for the purposes of this analysis, our definition of a 

water mass is that it must occupy physical space, and water with similar properties in 

separate physical spaces represent different water masses. The spatial attributes of water 

masses provide additional useful information not generally associated with genes, and 

provide a useful means in delineating the physical boundaries between waters that have 

similar properties identified by the cluster analysis. The mapping of defined water types 

for any cluster number k and clustering algorithm c into physical space (this case in 

dimensions of latitude and longitude) defines physical boundaries between similar water 

types. Because each of the clustering algorithms is slightly different, the boundaries 

described at any specific cluster number k between water types may be different. 

However, it was clear that different clustering algorithms often had similar boundary 

solutions at different cluster numbers. This is because different water types were 

differentiated at slightly different cluster numbers due to differences in the clustering 

algorithms. Because of this a physical space representation of the clusters was used to 

determine which boundaries occurred most often by constructing a 2-d histogram for 

boundaries at 2 ≤ k ≤ TAF . To detect the most common water mass boundaries for any 

cluster number, the cluster number gradient in latitude and longitude space was computed 

using: 
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where x  is Longitude,  is Latitude,  is the cluster number assignment for k 

clusters for c clustering algorithm and 

y xykcC

xykcC∇  is the magnitude of the cluster number  
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Figure 3.3. Figure of Merit (FOM), Average Slope Function (ASF) and Threshold of 

Acceptable Flatness (TAF) calculation for each of the four days with the results of each 

of the clustering algorithms. A large FOM indicates that the variance within each cluster 

is comparatively large and that the cluster centroid is a generally poor predictor of the 

other data points within each cluster. A small FOM indicates that the cluster centroid 

better predicts the other members of its cluster, and that the variance with in the cluster is 

comparatively small. ASF is the average percent change of the four clustering algorithms 

compared to the maximum FOM. TAF was defined when the average change in the FOM 

was less than 1% for more than three clusters. 
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gradient vector. Where was non-zero, it was replaced with a logical value of 1 to 

indicate the presence of a boundary using: 
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=xykcb
⎪
⎩

⎪
⎨

⎧ ≠∇

=∇

 0   if  1

0   if  0

xykc

xykc

C

C
       (3.4) 

where  is the logical boundary value for a given longitude and latitude for the given 

cluster algorithm for k clusters. Although it is nonsensical to calculate gradients of 

categorical data, this method effectively detects the boundaries of the water masses. A 2-

D histogram was constructed of high frequency boundaries for each of the four days 

using: 
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where  is the frequency that a boundary (0-100%) at a given longitude and latitude. 

This 2-D histogram describes the most common physical boundaries between similar 

water types defined by the clustering algorithms. The presence of a high frequency 

boundary was interpreted as a boundary between separate water masses.  

xyB

3.3.1.5. Gradient Analysis 

 In addition to determining where the major water mass boundaries are, the 

relative strengths of these boundaries were also estimated. Theoretically, water types 

could be distinctly separated in predictor space, but still be relatively close to each other 

in predictor space. In this case a boundary on a physical map between these water types 

would be drawn frequently between these distinct water types, while their differences 

would still be relatively minor. The purpose of the gradient analysis was to determine 
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how different water types were in predictor space in relation to geographic space. The 

relative strength of the boundaries was defined as:  

( ) ( ) ( )2)555()555(
2

)490()490(
2 '''' xxrsxrsxxrsxrsxxxxxx RRRRTSSTSSD ∆+∆+∆+∆+→ −+−+′−′=      (3.6) 

( ) ( ) ( )2)555()555(
2

)490()490(
2 '''' yyrsyrsyyrsyrsyyyyyy RRRRTSSTSSD ∆+∆+∆+∆+→ −+−+′−′=           (3.7)

 ( )
22

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

+⎟
⎠
⎞

⎜
⎝
⎛

∆
=∇ ∆+→∆+→

y
D

x
DyxG yyyxxx          (3.8) 

where  is standardized sea surface temperature, is standardized RTSS ′ ')490(rsR rs(490) , 

')555(rsR is standardized Rrs(555),  is the standardized predictor space distance 

between 

xxxD ∆+→

x  and ,  is the standardized predictor space distance between  

and , and  gradient in predictor space with respect to 

xx ∆+ yyyD ∆+→ y

yy ∆+ ( yxG ,∇ ) x  and . While 

the boundary analysis determines likely locations of water mass boundaries, 

y

( )yxG ,∇  

describes the strength of boundaries through simultaneous analysis of SST, Rrs(490), and 

Rrs(555). 

3.3.1.6. Current Structure of the Region 

  Surface current maps, measured by an HF radar system, provide a dynamical 

context in which to evaluate the placement of water mass boundaries. The long range HF 

radar system used here was first deployed in 2001 (Kohut and Glenn 2003), and consists 

of four remote transmit/receive sites along the coast of New Jersey and a central 

processing site in New Brunswick, New Jersey.  Using the scatter of radio waves off the 

ocean surface each remote site can measure the surface current component moving 

toward or away from the site (Barrick et al. 1977).  Information from all four remote sites 

is then geometrically combined at the central site to provide a total vector current map.  

 



  51

The systems are operating at a frequency of about 5 MHz, which provides range out to 

200 km offshore, a total vector grid resolution of 6 km and a surface current averaged 

over the upper 2.5 m of the water column.  Each current map is a three hour average. For 

this analysis, the three hour data was averaged for the days July 21, 31, and August 2. 

July 14 current data was not yet available. If a particular range cell did not have at least 

60% coverage over each day, the current vector in that range cell was not used in the 

analysis.  A simple drifter experiment, which modeled 48 drifters along a boundary on 

7/31, was used to determine if local advective processes could explain the changes in the 

boundary location during these days. This exercise attempts to predict the frontal location 

51 hours later on 8/02. The current field was interpolated to the position of each drifter. 

The three hour average current maps were assimilated sequentially. At hourly intervals, 

the location of the drifter was evaluated and a new vector was assigned to the drifter. At 

three hour intervals a new current map was assimilated.  

3.3.2. Independent Verification during LaTTE 

During the 2005 LaTTE experiment in the New York Bight, we independently 

tested our approach by comparing surface measurements of salinity and inorganic 

nutrients with the water mass boundaries predicted by the cluster analysis. In addition, 

the Ocean Color Monitor (OCM) satellite replaced the SeaWiFS satellite as the source for 

ocean color. For this study, matched satellite passes from April 13, 2005 were chosen 

because of relatively little cloud cover. The area analyzed was between 39.50°N – 

40.65°N latitude and 72.25°W – 73.2°W longitude. These data were analyzed according 

to the method outlined in Figure 3.2. Salinity measurements were made by flow through 

systems on board the research vessel R/V Hatteras. Nitrogen and silica measurements 
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were made on an Envirotech Autolab continuous nutrient analysis system modified for 

12-13 min analysis times using standard methods (Strickland and Parsons 1972). Salinity 

and nutrient measurements were overlaid on the boundary maps produced by the 

clustering algorithm to determine if the boundaries detected also represented changes in 

water column variables not directly used in the clustering algorithm.  

3.4. Results 

3.4.1. HyCODE  

This study focused on a series of four composite images of SST, Rrs(490) and 

Rrs(555) from July 14 to August 2, 2001. During this period, a phytoplankton bloom 

developed in the northern portion of the study site and dispersed alongshore to the south 

(Moline et al. 2004). Offshore, part of a Gulf Stream warm core ring was observed on 

August 2 as it propagated from east to west (Figure 3.1). The phytoplankton bloom may 

have been associated by terrestrial runoff and was sustained by several upwelling events. 

Outflow from the Hudson River, one of the largest sources of terrestrial runoff in this 

region, measured at the Waterford NY site prior to the satellite passes was up to a factor 

of 2 larger than the 25 year mean during that time period (Figure 3.4). (Yankovski and 

Garvine 1998) have shown that the time lag of these outflows to reach the study area is 

approximately 40 days, which coincides with the time with a large outflow from the 

Hudson River of this study (approx. June 4). In addition, this time period had several 

upwelling favorable wind patterns on or around July 19, 26 and 30. These upwelling 

wind events are regular in this region and stimulate phytoplankton growth (Schofield et 

al. 2002) (Moline et al. 2004). 
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3.4.1.1. Evaluation of the Figure of Merit 

 For each of the days,  was calculated from k = 2 to 30 clusters for the four 

clustering methods (Figure 3.3). These functions were generally decreasing with 

increasing cluster number in all cases and were similar to those found by (Yeung et al. 

2001) in that no distinct “elbow” was obvious. In all cases, the ACL clustering 

algorithm was slightly higher than the other three clustering algorithms. While not 

producing exactly the same  statistic, the AWL, K-means and C-means clustering 

algorithms were very similar within days. curves between days were similar in 

shape, however they differed slightly in magnitude. The  function for these days 

showed the most rapid decrease occurred where k < 10. In addition, all of the 

functions display erratic changes in value where 10 < k < 15. For k > 15, the 

 functions in all four days flattened noticeably. The 

FOM

FOM

FOM

FOM

FOM

)(kASF

)(kASF

)(kASF TAF value for 7/14, 7/21, 

7/31, and 8/02 were 19, 20, 24 and 20 clusters respectively. These values served as the 

upper bound for the boundary analysis. 

3.4.1.2. Location and Strengths of Common Water Mass Boundaries  

 The FOM  analysis of the water types defined by the four clustering algorithms 

indicated that the “ideal” number of water types (clusters) was in the range of 2 ≤ k ≤ 

TAF . For each c and k, k water types were defined that had boundaries described by 

equations 3 and 4 in physical space. Equation 5 is the frequency of these boundary 

observations across all c and k. A boundary frequency map ( ) was computed for each 

of the four days (Figure 3.5). In general, water mass boundaries become more defined 

from 7/14 to 8/02. The most frequent boundaries are associated with strong optical or 

temperature fronts. Figure 3.6 illustrates the boundary frequency differences between the  

xyB

 



  54

 

Figure 3.4. Wind record from the RUMFS field station and Hudson River flow recorded 

at Waterford NY during the study time period. From 7/14 to 8/02 there were three 

upwelling favorable events that may have sustained phytoplankton growth near-shore. 

The elevated stream flow during this particular year recorded at Waterford NY may have 

initiated the formation of a Hudson River derived water mass during the four day study 

period. It has been reported that water outflow from this area takes 40 days to reach the 

Southern New Jersey shore (Yankovski and Garvine 1998). 
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four days. As a function of total boundaries drawn on a map, high frequency boundaries 

( > 60%) were more spatially common on days 7/31 and 8/02 compared to 7/14 and 

7/21. Also, low frequency boundaries (0% < < 20%) are more common on days 7/31 

and 8/02 compared to 7/14 and 7/21. These two conditions cause the 7/31 and 8/02  

maps to appear more cleanly defined. In contrast, medium frequency boundaries (20% 

< < 60%) were more common on 7/14 and 7/21 compared to 7/31 and 8/02, causing 

the 7/14 and 7/21 maps to appear more cluttered. On 7/21, 7/31 and 8/02, when 

boundaries are more distinct, the major water masses are associated with the near shore 

plume, shelf water, water east of the shelf break front and the warm core ring. 

xyB

xyB

xyB

xyB

 The objective of the cluster analysis was to describe the inherent structure and 

separation of water types in predictor space, which was then mapped in the form of 

boundaries in figure 3.5. The purpose of the gradient analysis was to determine how 

different water types were in predictor space in relation to geographic space. Figure 3.7 is 

the application of equations 6, 7, and 8 to evaluate the relative strengths of the boundaries 

between water masses. Because each pixel is slightly different from its neighbors, the 

gradient is never zero. The median value for this gradient calculation for this study is 

approximately 10, with a standard deviation of about 10. Therefore a strong gradient has 

a value in excess of 20 for this study. On 7/14 and 7/21 gradients between water masses 

defined in the boundary analysis are relatively weak indicating that the water types found 

in these days are fairly similar. In contrast, strong gradients were found associated with 

the nearshore optical front. These relatively strong gradients are coincident with the high 

frequency boundaries described in figure 3.5 indicating that these particular water types  
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Figure 3.5. High frequency boundary locations as calculated from equation 5. The 

contrast indicates how often a particular pixel was designated as a boundary. The most 

frequent boundaries represent water types that are easily separable in predictor space. 

Boundaries become more distinct from 7/14 to 8/02. 
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Figure 3.6. The boundary frequency calculated by equation 5 related to the total number 

of boundaries drawn. The days with more disorganized boundaries (7/14 and 7/21) have 

less low and high frequency boundaries and more medium frequency boundaries. This 

causes the disorganized look on these days and indicates that the clustering algorithms 

had a difficult time coming to similar solutions. Days 7/31 and 8/02 had more low 

frequency and high frequency boundaries and low medium frequency boundaries 

indicating that the clustering algorithms were in agreement more often and that water 

types were consistently distinguished. 
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Figure 3.7. The gradient defined by equations 6, 7 and 8. The gradients are a relative 

measure of how different adjacent water masses are. Because no two adjacent pixels are 

equal, the gradient is never zero. The background gradient value for this study is 

approximately 10, with a standard deviation of approximately 10. Gradient values larger 

than 20 in this study are considered to be significant. Stronger gradients were evident in 

days 7/31 and 8/02. This indicates that the water types on either side of the boundary are 

markedly different. However, strong gradients are not necessarily coincident with high or 

medium frequency boundaries because two water types may be readily distinguishable in 

predictor space but still be relatively close to one another. 
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are structurally distinct and very different.  In addition, strong gradients were detected 

near clouds which may be a result of inadequate cloud masking. 

3.4.1.3. Surface Current Structure, Gradient Strengths and Boundary Locations 

 The seasonal mean flow in the summer time in this region is along shore toward 

the south (Kohut and Glenn 2003), which was generally observed in the three-hour 

average flow on 7/21, 7/31 and 8/02. However, the flow structure on these dates was 

highly variable. The current fields in figure 3.8 represent the flow field at the time of the 

satellite over pass with the spatial mean subtracted from it. This was done to visually 

enhance the fine scale current structure associated with the water mass boundary 

gradients. Generally speaking, gradients were associated with physical features in the 

flow fields such as horizontal sheer, indicating that these features were strongly 

influenced by advective processes. However, the strength of the gradient was not related 

to the strength of the horizontal sheer, nor were all horizontal sheers associated with 

gradients.  

 To determine if the apparent movement of the boundary was associated with 

physical advection, a simple simulated drifter experiment was performed (Figure 3.9). 48 

modeled drifters were placed along the frontal boundary on 7/31 and sequentially 

assimilated the surface current fields in hourly time steps. The predicted position of the 

major boundary feature was generally in good agreement with the location of the 

boundary on 8/02. The predicted boundary has a more pronounced “hammer-head” 

appearance much like that of the boundary on 8/02. In addition the northern protrusion of 

the front moved southward, approximating its location on 8/02. Because the predicted 

position of the boundary region approximates the location of the boundary on 8/02, it  
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Figure 3.8. Boundary gradients overlaid with surface current fields with the surface 

current spatial mean subtracted for visual clarity. Areas with larger gradients are 

coincident with convergent and divergent areas indicating that local current structure 

accounts for the gradient locations. However, not all convergent areas had gradients 

associated with them. 
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Figure 3.9. Results of the simulated drifter experiment. The predicted location of 48 

drifters on 8/02 based on the initial position of the 7/31 boundary by assimilating the 

CODAR measured surface currents generally approximates the location and shape of the 

boundary on 8/02. This indicates that the apparent movement of the boundary can be 

generally attributed to local advective processes. Also, this indicates that water masses in 

this area can be tracked effectively. 
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suggests that local advection processes are largely responsible for changes between 7/31 

and 8/02.  

3.4.2. LaTTE salinity and nutrient measurements 

 In the days prior to 4/13/2005, the Hudson River set a 25-year record for 

freshwater discharge creating a complex mix of marine and fresh waters (Chant 2005). 

Boundary analysis of the merged OCM and AVHRR data in that day revealed highly 

convoluted boundaries, indicating complex interaction between the fresh and marine 

waters. As expected, underway salinity measurements indicate that in general water is 

freshest near the mouth of the Hudson River. However, salinity measurements appear to 

change abruptly across the water mass boundaries calculated from satellite 

measurements. There appears to be a fresh water “bulge” in the bight apex, as well as a 

coastally trapped freshwater plume along the New Jersey shore (Figure 3.10). These 

abrupt changes appear to be coincident with the water mass boundaries detected from 

space. 

 Nitrate and silicate measurements on this day also show large changes in 

concentration across water mass boundaries. Nitrate is high within the “bulge” at the 

bight apex, but drops to average oceanic marine levels outside the bulge indicating that 

this region represents a strong nutrient gradient (Figure 3.11). Silicate is also higher 

within the “bulge”. Interestingly, silicate is also relatively high in an offshore water mass 

(center of Figure 3.12). This water mass is identified as an older river plume, making its 

way off the shelf ((Chant 2005). Nevertheless, measurements of nitrate and silicate 

appear to corroborate the placement of water mass boundaries.  
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3.5. Discussion 

AVHRR and ocean color satellite products are used to measure or infer several 

ocean processes. These include the tracking of the Gulf Stream (Auer 1987), the 

modeling of Gulf Stream rings (Glenn et al. 1990) and to estimate global ocean primary 

production (Behrenfeld and Falkowski 1997). New production in an ocean system has 

also been estimated through the combination of AVHRR and ocean color 

(Sathyendranath et al. 1991). To estimate new production, water types were defined 

intuitively, to which an idealized biomass profile was assigned. Conceivably, errors could 

be introduced in this type of approach if the way in which water types were defined was 

incorrect. (Karabashev et al. 2002) addressed the water type problem through K-means 

cluster analysis of SeaWiFS data, however the number of clusters chosen (k = 20) was 

subjective.  

More recently, (Martin-Trayovski and Sosik 2003) have shown very convincingly 

that there exist distinct optical water types in the Mid-Atlantic Bight region, and that they 

can be successfully discriminated. Their study developed a feature-based classification 

based on remote sensing reflectance in three wave bands and used a training set of data 

with known water types to develop classifiers. The method was evaluated on the ability 

of the classifiers to properly classify pixels into the correct categories. A goodness of fit 

measure was used as a measure for determining how variable the water is within each 

water mass. This method works very well if some a priori knowledge about the water 

types or water masses present is available. The FOM approach builds on this technique 

and does not require a training set of data, nor prior knowledge of the water masses 

present, as it strictly looks for inherent structure in the data. Additionally the method  
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Figure 3.10. Independent test of boundary analysis with salinity as an independent 

predictor during the LaTTE 2005 experiment. Black areas indicate areas of cloud 

contamination or land. Boundary analysis predicted a large bulge in the bight apex as 

well as a coastally trapped river plume along the New Jersey shore. Salinity transects by 

the R/V Hatteras confirm these boundaries. 
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Figure 3.11. Independent test of boundary analysis with nitrate as an independent 

predictor during the LaTTE 2005 experiment. Black areas indicate areas of cloud 

contamination or land. This analysis indicates that nitrate levels in the “bulge” are very 

high while on the other side of the bulge boundary they are typical of open ocean values. 
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Figure 3.12. Independent test of boundary analysis with silicate as an independent 

predictor during the LaTTE 2005 experiment. Black areas indicate areas of cloud 

contamination or land. This analysis indicates that nitrate levels in the “bulge” are very 

high while on the other side of the bulge boundary they are typical of open ocean values. 

In addition, there are relatively high values of silicate present in an old river plume that is 

being advected offshore. 
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allows for the estimation of the strengths of the fronts between water types in physical 

space and temporal changes in boundary locations due to local advective processes. The 

(Martin-Trayovski and Sosik 2003) method provides a solid foundation for water mass 

classification from space, and complements this effort as the methods could be run in 

conjunction to elucidate water mass characteristics based on derived satellite products. 

 In general, the water masses detected in this study were a near shore plume, a 

water mass over the continental shelf separated by the shelf-break front, water offshore 

the shelf break front and a warm core ring. As for their origins, we can only speculate as 

satellites only detect their surface expressions. The near shore water mass is most likely 

from the Hudson River, but it could also be upwelled water driven by southwest winds 

(Glenn et al. 2004). The origin of the shelf water is from glacial melt along the southern 

Greenland coast that flows south to the MAB as a buoyant coastal current (Beardsley and 

Winant 1979) (Chapman and Beardsley 1989). Beyond the shelf break, water masses and 

the warm core ring reflect the Gulf Stream and or the Sargasso Sea. 

This approach to water mass classification has five basic steps: i) project 

predictors measured for each water parcel into standardized predictor space; ii) use a 

suite of clustering algorithms to detect clusters in multi-dimensional predictor space data 

which are analogous to water types; iii) use the  statistic to determine a reasonable 

range of how many water types exist; iv) map water types into geographic space and 

determine the most frequent boundaries between water masses; v) evaluate the difference 

between water types in predictor space as a measure of the difference or gradient between 

defined water masses. What this analysis provides are means that validate and add 

mathematical rigor to intuition about the water masses present in this study. The 

FOM
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remaining portion of the paper will discuss the factors that must be considered when 

interpreting the water mass boundaries and gradients calculated by this analysis. 

3.5.1. Standardization of Variables 

 The three predictors were standardized to their respective means and standard 

deviations so that the variation observed in each predictor gets equal weight in this 

analysis. Without this standardization, temperature alone would have dominated the 

results because it is numerically on the order of 101 units while Rrs is numerically on the 

order of 10-3 units. However, in doing this the water mass boundaries and gradients can 

only be compared within the group that was standardized, in this case the four days 

presented here. This is an important consideration in interpreting the results of the 

algorithm. Large gradients and frequent boundaries surround the obvious optical load 

seen on days 7/31 and 8/02 in Rrs(555) because it represented a large change in optical 

predictors compared to all of the data in this analysis. While this bloom is a distinct 

feature for those four days, if the question were whether this feature is distinct compared 

to a seasonal trend or annual trend, the four day data set would need to be standardized to 

the mean and variability of the season or year. The same principle applies for a 

comparison of these images to images taken in another location or in reference to larger 

regions. For example, for a comparison of the gradients in this image to dynamics in 

another coastal region, the mean and variability of both regions would have to be 

included for proper comparison. While this nearshore optical load may be very distinct in 

the context of these four days in this particular region, its distinctness seasonally or 

annually in this region may be different depending on the inherent mean and variability 

of the system. 
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 While standardization of the variables is important for interpretation of the results, 

it is also important to note that standardization of the data does not guarantee that the data 

are normally distributed. Examining figure 3.1, one can see that the temperature and the 

Rrs(490) are fairly normally distributed (i.e. the area with high values is approximately 

equal to area with low values, and the majority of the area is covered with mid-range 

values). In the case of Rrs(555), most of the area is covered with low values and only a 

small area near shore is covered with high values. This means that the data have a slightly 

skewed distribution. Therefore, in predictor space, despite standardization of this 

particular data set, there is a larger range of data along the Rrs(555) axis, thus waters with 

high Rrs(555) values in this study are more easily discriminated in parameter space. 

3.5.2. Predictor Space Structure, Frequent Boundaries and Gradients 

The suite of clustering algorithms was used to detect the inherent structure or 

water types in predictor space represented in four composite data sets of SST, Rrs(490) and 

Rrs(555). For increased computational speed clusters were defined from from 2 to 30, 

however it is mathematically possible to define n water types where each observation is 

unique. This is the challenge associated with categorizing a known continuum of data; it 

is difficult to determine how different an observation of SST, Rrs(490) and Rrs(555) should be 

before it is considered a separate water type. The FOM statistic provides a mean to 

address this problem. While not providing a definitive answer as to how many water 

types existed in this data set, it did reduce the range of possibilities from n water types to 

2-TAF water types. The geographic distribution of water types detected by the clustering 

algorithms between 2 and TAF is illustrated in figure 3.5. The significance of high 

frequency boundaries in this figure is that they represent consistent divisions of water 
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types detected by more than one clustering algorithm at more than one cluster number 

(k). In essence, the four clustering algorithms vote by majority of what data in predictor 

space determine the dominant water types. However, because this technique uses the 

similarity of solutions by different clustering algorithms to determine dominate 

boundaries of water masses, the dissimilar solutions, which represent the low frequency 

boundaries in figure 3.5, represent somewhat of a “forced” result due to low signal.  

While boundaries may be consistently reflecting recognizable water types in 

predictor space by the clustering algorithms, the frequency of boundaries is not 

necessarily related to the gradients separating the water masses. For example, on 7/14 

several high frequency boundaries were present indicating that the clustering algorithms 

were finding consistent structure in predictor space indicating discrete water types. 

However, gradient analysis of that same day indicates that while distinct water types are 

present in the data set, the differences between them are relatively small. This is different 

than days 7/31 and 8/02 when the most frequent boundary also reflected a strong 

gradient. Therefore, for complete interpretation of water mass characteristics, both 

frequency of boundaries and gradient strengths must be considered. For example, a high 

frequency water mass boundary is calculated on 7/21 at approximately 40°N, 73°W 

which is the same frequency as the water mass boundary calculated for the nearshore 

“hammer-head” shape on 7/31 and 8/02 (Figure 3.5), however the gradient calculated for 

this boundary (Figure 3.7) is weak compared to gradients found on 7/31 and 8/02. This 

result indicates that the boundary on 7/21 is separating distinct water types in predictor 

space, however the water masses represented by these water types are not nearly as 

different as the water masses separated along the “hammer-head” shape on days 7/31 and 
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8/02. A distinct frontal region cam be inferred on 7/21 in this area, but the water masses 

that are meeting at this front are not as different as ones encountered elsewhere in this 

analysis. 

3.5.3. Current Structure, Boundaries and Gradients 

 The measured current structure associated with the boundaries and gradients 

indicate that physical features in the current field such as convergent zones and horizontal 

sheers are generally associated with water mass boundaries. This suggests that the 

physical processes are driving the propagation of the frontal region, as opposed to 

spurious changes in the optics due to changes in biomass or SST due to solar sea surface 

warming. Furthermore, it has been shown that optical properties are highly related to 

spatial physical dynamics in this region (Oliver et al. 2004). However, it should be noted 

that the current resolution (6 km) averaged over three hours might be too coarse to 

resolve all pertinent currents that are shaping these complex fronts. The drifter simulation 

(Figure 3.9) from 7/31 to 8/02 shows that the positions of water mass boundaries in this 

study are also related largely to local advective processes. The predicted boundary 

location of the 7/31 boundary on 8/02 using assimilated CODAR fields is very similar to 

the observed boundary position on 8/02. The current magnitudes and directions are 

sufficient to explain not only the general location of the water mass boundary, but also 

how some of the specific features form such as the protrusion of the northern horn of the 

“hammer-head” shape. Discrepancies between the predicted location of the boundary on 

8/02 and the actual location of the boundary on 8/02 may be due to local vertical sheers. 

The CODAR system measures the current velocity of approximately the top meter of the 

water column, while the boundary location is responding to the integrated depth averaged 
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current. Despite this, these results suggest that at least over the short term in this coastal 

region, water masses can be identified and tracked. 

3.5.4. Independent verification by salinity and inorganic nutrients 

Having developed an algorithm based on a separate set of imagery, we sought to 

rigorously test our assertion that this type of cluster analysis can deconvolve a complex 

continental shelf environment into meaningful water masses. Based on the comparison of 

salinity, nitrate, and silicate concentrations, it appears that the boundaries delineated from 

space correspond to changes in these three independent variables (Figures 3.10-3.12). In 

some cases, the changes in these variables are slightly offset from the location of the 

boundary. This could be due to time of satellite pass issues, as the satellite only measures 

once a day while it could take a research vessel the better part of a day to cover the same 

area.  

Presently, ocean observatories are being developed world wide and the water 

mass analysis presented here is an efficient way to assimilate observational data and 

objectively describe prevalent water types in a system as well as describe the strengths of 

the boundaries between them. From an operational standpoint, this can be a powerful tool 

in determining sampling strategies for specific experiments. Depending on the variables 

of interest, this type of analysis can be used when the position of water masses defined by 

other predictors or many predictors are more cryptic and non-intuitive. With the 

development of remote sensing optical inversion algorithms that detect functional groups 

of phytoplankton, this analysis can be used to detect clusters of communities and identify 

ecotones. These ecotone regions often have higher primary and secondary production 

leading to higher fish production (Pingree et al. 1974). In addition, this type of analysis 
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can be used in understanding the biogeochemistry of a particular water mass and be able 

to track it in the context of an observing system, and to sample its populations over time. 

3.6. Conclusion 

The goal of this study was to determine if specific water types could be identified 

and mapped as distinct water masses in a coastal region using satellite data, and whether 

the measured surface currents, salinity and nutrient fields supported the boundaries and 

gradients in these maps. Because of the episodic and dynamic nature of coastal regions, 

optical discriminators were added to a water mass analysis to resolve water types that 

would not be resolved only by a single suite of parameters. To do this tools were adapted 

from the field of bioinformatics to constrain the number of water types in this study. 

Based on the boundary and gradient analysis, water types based on temperature and 

remote sensing reflectance could be mapped and that the relative differences between 

them could be estimated. Furthermore, the boundaries and gradients were generally co-

located with features in the current, salinity and nutrient fields. Simulated drifter 

experiments show that the location of these boundaries is largely a result of local 

advective processes. This suggests that the predictors used in this experiment change 

slow enough to act as effective tracers of water masses over short time scales and that 

combining satellite data products is an effective method for discriminating water masses 

found on continental shelves. 
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Chapter 4  

4.0. Density and Nitrogen Related Patterns of Copia-Like Retrotransposon 

Transcription in the Diatom Phaeodactylum tricornutum 

4.1. Abstract 

 Retrotransposons are mobile genetic elements that encode the necessary 

machinery for their own replication. Many studies have linked their expression to 

environmental stress. Genome sequencing and EST libraries of the diatom 

Phaeodactylum tricornutum indicate that this organism has an active copia-like 

retrotransposon. In this study we test the hypothesis that this mobile element is induced 

by nitrogen stress. We show for the first time in a diatom that a retrotransposon is 

induced by nitrogen stress, but also find that the predominant pattern of transcription is 

related to cell density. Based on this pattern, we suggest that the expression of the copia 

element is also possibly related to cell surveillance and signaling. 

4.2. Introduction 

 Retrotransposons are nearly ubiquitous among eukaryotes, often comprising a 

large fraction of the genome (Lynch and Conery 2003). Retrotransposons are capable of 

autonomous proliferation within a genome through the activity of self-encoded reverse 

transcriptase, but also are capable of self-deletion through illegitimate recombination 

(Devos et al. 2002).  In addition to the presence of reverse transcriptase, many 

retrotransposons have group specific antigen, protease, polymerase, enveloping, and 

endonuclease domains, making the basic structure of a retrotransposon reminiscent of a 

modern retrovirus (Kazazian 2004). The activity of retrotransposons can be destructive 

by interrupting or rearranging crucial sequences, but also potentially beneficial by 
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introducing novel combination of sequences. Because of this activity, these elements are 

thought to be major drivers of genome evolution by increasing the bulk rate of genome 

mutation (Kazazian 2004).  

The estimated rates of retrotransposition are highly variable and depend on host of 

factors including transcriptional activity, efficiency of re-insertion, the relative fitness of 

the insertion and the effective population size, many of which are unknown factors. 

However, there are now many examples of retrotransposons becoming active during 

environmental stress, most of which have come from eukaryotic plant lineages 

(Grandbastien 1998). For example, a transcriptionally active retrotransposon was found 

in experimental tissue cultures of the rice Oryza sativa (Hirochika et al. 1996). This study 

showed that the stress of tissue culture increased the copy number of the Tos17 LTR 

retrotransposon significantly over a 16-month period.  A more direct study of the OARE-

1 a Ty1-copia LTR retrotransposon in oat (Avenia sativa) showed that these 

retrotransposons were also activated by the stress of UV light exposure, and by the 

addition of jasmonic and salicylic acid and plant wounding (Kimura et al. 2001). In 

addition, dramatic activation of the Tnt1A retrotransposon in tobacco is also induced in 

response to wounding (Grandbastien 1998). The natural distribution of the closely related 

BARE-1 LTR retrotransposon in natural environments also suggest they are active in 

natural populations. It has also been shown that there was a sharp change in the 

distribution patterns of the BARE-1 element in wild barley (Hordeum spontaneum) in 

response to microclimate habitats (Kalendar et al. 2000). Populations of barley on 

adjacent north-facing and south-facing slopes of a canyon had large differences in the 

copy number of BARE-1. The increase of copy number was related to the harsher, more 
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stressful environment associated with inhabiting a south-facing slope. Taken together 

with the laboratory studies mentioned earlier, there is mounting evidence that genome 

restructuring through the activities of retrotransposons in response to stress is not a rare 

occurrence, but an active response to local environments that increases the rate of 

genome evolution. 

 Like south-facing mountain slopes, the coastal marine environment is also a 

stressful environment for diatoms. The physical dynamics of the coastal marine 

environment result in highly episodic nitrogen pulses to the coastal ocean (Malone et al. 

1983). Diatoms living in this environment are often mixed in and out of large river 

plumes and upwelling waters rapidly, resulting in rapid changes in ambient nutrient 

concentrations. Diatoms respond to this sort of nutrient regime by following a “boom and 

bust” growth model, where diatom biomass increases rapidly over a short period of time, 

then dramatically crashes once nutrients run out. This phenomenon often results in anoxic 

or hypoxic “dead zones” in coastal areas due to bacterial respiration of large amounts of 

diatom biomass. However, because diatoms strip nitrogen out of the water column so 

efficiently, nitrogen limitation is a common and recurrent biological stress for diatoms. 

Therefore, diatoms might exhibit increased transcriptional activity of retrotransposons in 

the presence of variable nitrogen regimes. Recent sequencing and EST libraries indicate 

that a Copia-like retrotransposon (CLR) is transcriptionally active in the coastal marine 

diatom Phaeodactylum tricornutum (Allen 2005) (Figure 1). However, whether the 

transcription of this retrotransposon is induced by environmental stress is not known. In 

this study, we hypothesize that the transcription of the CLR in P.  
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5.2 kb 

 

 

 

 

 

Figure 4.1. Map of Copia Element in P. tricorntnum. The element is flanked by two 163 

bp regions and is in excess of 100 copies per genome. 
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tricornutum is related to the stress of varying nutrient regimes. We expose batch cultures 

of P. tricornutum to rapid changes in nitrogen concentration and track the transcription of 

the CLR using RT-PCR. We find that the while CLR does exhibit a significantly higher 

transcription in low nitrogen conditions, cell concentration is a significant predictor of 

CLR transcription levels.  

4.3. Methods 

4.3.1. Culture Conditions and Treatments 

 Batch cultures of P. tricornutum were tracked for a period of 14 days (enumerated 

from 0-13) and exposed to various nutrient regimes (Table 4.1). All cultures were grown 

in a 14-10 light-dark cycle at 200 µmole photons m-2 s-1 and moderately bubbled. On day 

0, one 4L culture was started and grown for a few days to provide enough biomass for the 

separate nitrogen treatments. This initial culture was grown in F/2 media (Guillard and 

Ryther 1962) and had a starting concentration of 800 µM nitrate. On day 3, the biomass  

                      Table 4.1. Nitrogen concentrations added to the F/2 growth media.  
 

Days 0-3 3-9 9-13 
Control 800 µM 800 µM 800 µM
Treatment 1  0 µM 800 µM
Treatment 2  0 µM 75 µM 
Treatment 3  0 µM 75 µM*

                             *Nitrogen was added back in the form of ammonia 
 

was equally split into four cultures; one control culture and three cultures with various 

nitrate treatments. Approximately ¼ of the biomass from the initial culture was spun 

down and re-suspended in new respective growth media. The control cells were 

resuspended back into 3L of F/2 media and the three treatment cultures were placed into 

3L F/2 –N media (F/2 media with zero nitrogen added). Before the transfer of these 

cultures, they were washed with F/2 –N media twice to remove as much nitrogen as 
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possible. On day 9, all four cultures were again centrifuged and re-suspended into 2L 

fresh media for nitrogen recovery. The control culture and treatment 1 were placed back 

into nitrogen replete F/2 media. Treatment 2 was placed into F/2 with 75µM nitrate and 

treatment 3 was placed into F/2 with 75 µM ammonia. Cells were harvested from each of 

these conditions approximately twice per day. 250ml of culture was spun down at 10000 

rpm at 4ºC for 10 minutes. Most of the supernatant was poured off, then concentrated 

culture was transferred to 2ml micro tubes. Cells were spun again for 1 minute at 10000 

rpm and flash frozen in liquid nitrogen before being stored at –80ºC.

4.3.2. Cell Counts 

 Cell density was measured using a Coulter Multisizer II. Cells were measured 

using a 70 µm glass orifice in triplicate. Cells were diluted between 100 and 1000 times 

into 0.4 µm filtered seawater and were counted immediatly. 500 µl of the diluted samples 

were counted and coincidence levels were less than 4%.  

4.3.3. Photosynthetic Physiology 

 The photosynthetic physiological response to the various nitrogen treatments was 

measured using a Satlantic Fluorescence Induction and Relaxation (FIRe) fluorometer 

(Gorbunov and Falkowski 2004). The ratio of variable chlorophyll fluorescence to the 

maximum chlorophyll fluorescence (Fv/Fm) is the quantum efficiency of photosystem II, 

thus is an indicator of how efficient a photosynthetic organism can utilize light energy. 

Because photosystem II is the primary energy gateway for many photosynthetic 

organisms and is nitrogen rich, Fv/Fm has been used as a general “health” index of 

photosynthetic organisms (Kolber et al. 1998).  In addition to measuring Fv/Fm for each 

of the treatments, Fm/cell was calculated by dividing chlorophyll fluorescence by cell 
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density as a proxy for how well the nitrogen additions were incorporated as intracellular 

pigment. 

4.3.4. RNA Extraction and QPCR 

 RNA was extracted from the frozen pellets using Tri Reagent® according to 

manufacturers recommended protocol (Ambion). The RNA was subsequently treated 

with Turbo DNA-free™ kit, using the most stringent DNAse treatment recommended by 

the manufacturer (Ambion). DNAse treated RNA was then reverse transcribed into first-

strand cDNA with the SuperScript™ III First-Strand Synthesis System for RT-PCR 

(Invitrogen) using oligo-dT primers. Gene transcription was measured using the 

Brilliant® SYBR® Green QPCR Core Reagent Kit and the Stratagene MX3000P QPCR 

machine (Stratagene). 

4.3.4.1. House Keeping Genes and Primer Optimization 

 The transcription of CLR was quantified relative to the transcription of two other 

genes, histone and the TATA box binding protein (TATA). The histone protein is integral 

to DNA organization and the TATA box binding protein is a basal transcription factor. 

Because of their critical importance to the cell, they are considered housekeeping genes 

and are assumed to be constitutively expressed. They have been used successfully as 

normalizing genes in previous P. tricornutum experiments (Allen 2005). Two genes were 

chosen to normalize transcription of the CLR to avoid bias interpretation stemming from 

a single normalizing gene (Thellin et al. 1999). 

 CLR primer sequences were 5'-GTGTTCTTGCTGCAAATGGA-3' (forward) and 

5'-ATTCATCGGGGTCACCAATA-3' (reverse). They were designed to amplify a 174 

bp region of the CLR reverse transcriptase domain. The primers used for histone were  5'-
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AGGTCCTTCGCGACAATATC-3' (forward) and 5'-ACGGAATCACGAATGACGTT-

3' (reverse) and amplified a 150 bp region. The primers used for TATA were 5'-

CGGAATGCGCGTATACCAGT-3' (forward) and 5'-

ACCGGAGTCAAGAGCACACAC-3' (reverse) and amplified a 180 bp region. These 

amplicons were cloned into plasmids, which were linearized by restriction digest. The 

linearized plasmids were diluted in series from 10X to 1e-7X to serve as pure target for 

optimization (Table 4.2). CLR, histone and TATA efficiency of amplification were 99%, 

95% and 95% respectively. 

 

Table 4.2. Optimized primer conditions.  
 

Gene Forward:Reverse 
Primer Ratio 

Individual Primer 
Concentration 

CLR 1:1 800 µM 
Histone 1:1 800 µM 
TATA 1:1 300 µM 

 
 

4.4. Results 

4.4.1. Cell Density and Photosynthetic Physiology 

 In general, cell density increased throughout the experiment after the inoculation 

and dilution events (Figure 4.2). During exposure to F/2 –N media, cells increased in 

number initially, but noticeably reduced their growth rates after a few days.  Fv/Fm is in 

the control culture was >0.45 throughout the experiment, indicating that the control 

stayed healthy throughout the experiment. When the three treated cultures were exposed 

to F/2 –N media, Fv/Fm dropped quickly for all cultures, stabilizing at a value of ~0.23, 

indicating that these cultures were physiologically stressed (Figure 4.2 B C D). In  
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Figure 4.2. Cell density, Fv/Fm, and Fm/cell for the control (A) and for treatment 1, 2, 3 

(B, C, D respectively – Table 1). Grey areas indicate time points where cultures were 

exposed to a zero nitrogen condition. 
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addition, Fm/cell decreased relative to the control indicating that the amount of 

chlorophyll per cell was decreasing during nitrogen stress. This is consistent with the 

internal harvesting of nitrogen rich chlorophyll by the cells to maintain growth. For all 

three treatment cultures, the addition of nitrogen back into the system resulted in a 

dramatic increase in Fv/Fm within 10 hours and approached control Fv/Fm levels in 23 

hours. In treatment 1, Fv/Fm remained high after nitrogen addition and Fm/cell increased 

indicating that the nitrogen addition was resulting in a downstream increase of 

chlorophyll. In treatments 2 and 3, where only 75µm nitrate and 75µm ammonia were 

added back to the culture, Fv/Fm increased for a short time, but then dropped dramatically 

as the nitrogen was used by the cells. While cell number increased dramatically after the 

low-level nutrient addition, Fm/cell did not show a large increase indicating that the 

nitrogen addition was not being used to manufacture chlorophyll. 

4.4.2. Relative Transcription of Copia-like Retrotransposon 

 Fold change in CLR transcription normalized to histone transcription 

(Copia/Histone) and in CLR expression normalized to the TATA box binding protein 

(Copia/TATA) showed a general increase throughout the experiment (Figure 4.3). 

Transcription of the CLR element was 3-7 fold higher at the end of the stress time period 

than at the beginning of the experiment. This indicated that CLR expression was not 

primarily related to stress associated with nitrogen starvation. Model II regressions of the 

fold change in Copia/Histone and Copia/TATA to fold change in cell number indicated 

that CLR transcription was significantly positively correlated to fold change in cell 

density (P < 0.01 for both relationships) (Figure 4.4). Furthermore, the slopes of these 

two regressions were not significantly different (P < 0.01). Notably, the experimental  
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Control Treatment 1 Treatment 2 Treatment 3Control Treatment 1 Treatment 2 Treatment 3
Figure 4.3. Increase in CLR transcription over the time course of the experiment. Shaded 

areas indicate when cells were exposed to a 0 nitrogen condition. Expression at the end of 

the experiment is significantly higher than at the beginning of the experiment. 
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Figure 4.4. Model II regression between fold change in CLR expression relative to 

histone (A) and relative to TATA (B) verses fold change in cell density. Blue dots are the 

control, pink dots are treatment 1, green dots are treatment 2 and gray dots are treatment 

3. Regression lines were significant at the p<0.01 level and were not significantly 

different from each other between panel A and panel B. 
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conditions did not overlay each other. The control condition was below best-fit line while 

the three treatment conditions were above it. This indicates that for equivalent cell 

densities, the cultures that were exposed to low nitrogen conditions had a higher 

transcription level of CLR as compared to the control culture. 

To remove the density dependent effect of CLR transcription, we normalized the 

fold transcription of CLR to fold increase in cells/ml. Then, for plotting purposes, we 

subtracted the control condition from the three treatment conditions to determine if, after 

the density dependent effect was removed, there was significantly higher transcription of 

CLR during nitrogen treatments (Figure 4.5). Analysis of the time series in this manner 

revealed that CLR transcription was significantly higher only after cells had spent 2-6 

days under nitrogen limited conditions. A large excursion in CLR transcription relative to 

the control was observed after the initial dilution, however, the second dilution did not 

show the same effect. The addition of nitrogen on day 9 appeared to alleviate the 

increased transcription of CLR relative to the control and initiated a general down 

regulation of CLR transcription through the end of the time series which converged to the 

expression level in the control. 

4.5. Discussion 

Retrotransposons have been traditionally described as genetic parasites because 

they encode for their own reproduction (Doolittle and Sapienza 1980; Orgel and Crick 

1980). This activity makes them a potentially harmful mutagenic force within a genome. 

Stress induction of retrotransposons has been observed in a variety of organisms (Wessler 

1996; Grandbastien 1998), leading to the idea that an organism under stress is less able to 

control these otherwise harmful mutations. An alternative interpretation of stress induced  
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Figure 4.5. Fold change in CLR expression normalized to fold change in cell density 

Control expression was subtracted out and designated as a zero-line to show the change 

of CLR expression relative to the control after the effect of cell density is removed.  
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retrotransposition is that these elements are employed by the organism to increase the 

genetic diversity in hopes of genetically adapting to the stress environment (McClintock 

1984). Because it is still unclear to what level retrotransposition affects the fitness of the 

organism, distinguishing between these interpretations is difficult. However, if the 

expression of a particular retrotransposon can be linked to some other nominal cell 

function or have some net genetic benefit, this would suggest that retrotransposons are in 

some cases beneficial (Kidwell and Lisch 1997). For example, retrotransposons 

sequences are often found in promoter regions of genes (Takeda et al. 1999). 

In this study, we found that exposing P. tricornutum to nitrogen stress resulted in 

up to a two-fold increase in the CLR compared to a nitrogen replete culture. This 

represents the first demonstration of an environmentally related expression of a 

retrotransposon in a phytoplankton. However, the major CLR induction pattern appeared 

to be also significantly correlated with cell density. Density-dependent expression of a 

gene has been traditionally linked to cell signaling and quorum sensing (Fuqua et al. 

1994; Bassler 1999).  Several studies have shown that diatoms exhibit complex quorum 

sensing behavior that has implications for their predators (Ianora et al. 2004) as well as 

sensing nutrient conditions resulting in the induction of autocatalytic cell death (Vardi et 

al. 2006). Furthermore, it has been suggested that retrotransposons are regulated by cell 

signaling pathways (Labudova and Lubec 1998). Therefore, it seems possible that the 

density dependent transcription of CLR is in someway related to cell signaling. While 

this is a speculative assertion that requires further testing, we feel that the density 

dependent expression of CLR independent of stress conditions suggest that the function 
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of this retrotransposon is not solely selfish, but may be employed by the cell under 

normal growth conditions.   
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Chapter 5 

5.0. The Mode and Tempo of Genome Size Evolution in Eukaryotes 

5.1. Abstract 

Eukaryotic genome size varies over five orders of magnitude; however, the 

distribution is strongly skewed towards small values. Genome size does not appear to be 

an entirely neutral character, as it is highly correlated to a host of phenotypic traits, 

making it possible that the relative lack of large genomes is due to selective removal. 

However, these observations have not been considered with respect to the rate of genome 

size evolution. Here, using phylogenetic contrasts, we show that the rate of genome size 

evolution is proportional to genome size, with the fastest rates of evolution occurring in 

the largest genomes. This trend is evident across all major clades analyzed, indicating 

that, on long time scales, proportional change is the dominant and universal mode of 

genome size evolution in eukaryotes. Our results show that the proportional mode of 

evolution is sufficient to describe the skewed distribution of eukaryotic genome sizes in 

nature without invoking strong selection against large genomes.  

5.2.  Introduction 

 Genome size is a unique biological trait because it lies at the intersection of 

genotype and phenotype. While the size of the genome does not necessarily confer 

genotypic information, it might have great evolutionary significance evidenced by its 

large number of phenotypic correlates, including cell size (Gregory 2001), metabolic rate 

(Kozlowski et al. 2003) and genomic landscape (i.e., the relative number of genes, introns 

and mobile genetic elements) (Lynch and Conery 2003; van Nimwegen 2003). Many 

causal explanations have been hypothesized to account for the strong statistical 
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correlations between these traits and genome size (Petrov et al. 2000; Gregory 2001; 

Petrov 2001; Gregory 2003; Cavalier-Smith 2005). While these explanations differ 

regarding the particular evolutionary mechanisms that ultimately determine genome size, 

natural selection acting on its phenotypic correlates might provide means by which the 

genome size distribution in nature is determined. Large eukaryotic genomes are rare in 

nature (Gregory 2005; Knight et al. 2005), and studies on the rates of extinction and 

species richness suggest that large genome size is a deleterious trait which is selectively 

removed from Eukarya (Vinogradov 2003; Vinogradov 2004). However, the influence of 

the underlying molecular mechanisms on the dynamics of genome size evolution has not 

been fully considered. Here, we show that the dynamics of genome size evolution 

necessarily leads to the comparable lack of large genomes, even in the absence of 

selection against them. 

The rate of genome size evolution is the balance between the rates of DNA 

insertion and deletion (indels). Thus, fundamentally, genome size evolution is governed 

by the molecular mechanisms that produce indels and by the processes that lead to their 

fixation in populations (Petrov et al. 2000). In eukaryotes, the dominant mechanisms 

include unequal chromosome crossover (Smith 1976), DNA replication errors (Albertini 

et al. 1982; Bebenek and Kunkel 1990; Kunkel 1990), polyploidization (Soltis and Soltis 

1999), and the proliferation and recombination of transposable elements (Devos et al. 

2002; Kazazian 2004). These mechanisms of DNA mutation potentially have variable 

responses to selection pressures (or lack thereof) and, depending on the organism in 

which they occur, will have variable rates of fixation, reflecting the mosaic of genome 

size evolution (Petrov 2001).  While the modes of indel production are diverse, what is 
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essential here is that virtually all changes in the rates of indel generation and/or fixation 

are proportional to the initial genome size. For example, the increase in DNA resulting 

from polyploidy is proportional to the initial genome size, as is the probability of total 

insertions and deletions due to random replication errors. In addition, the probability of 

transposition is a function of the initial transposon copy number, as well as the number of 

potential target insertion sites (Zhu et al. 2003; Kazazian 2004). Therefore, we might 

expect the rate of genome size evolution to also reflect these underlying proportional 

mechanisms that alter genome size.  

In this study, we estimated the rate of genome size evolution in 20 traditionally 

recognized eukaryotic taxonomic groups comprising 168 species, and use the concept of 

Brownian evolution (Bookstein 1987) and phenotypic contrasts (Felsenstein 1985) to test 

the hypothesis of proportional genome size evolution in eukaryotes. In our analysis, we 

find strong evidence of proportional evolution in eukaryotic genome size and suggest that 

observed genome size distribution in eukaryotes emerges necessarily from the underlying 

mechanics of proportional evolution.    

5.3. Results and Discussion 

The absolute magnitude of evolutionary change (i.e., rate of evolution) for 

phenotypic traits under a simple Brownian model behaves as if drawn randomly from a ½ 

normal variance distribution at each time step. In other words, the variance of the 

underlying evolutionary rate is fixed, and is not correlated with the preceding phenotype. 

However, a trait under proportional evolution violates the Brownian model because the 

mean and the variance of the underlying evolutionary rate scale with, and depend on, the 

preceding phenotype. Therefore, if a phenotypic trait, such as genome size, evolves 
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primarily in a proportional manner, we would expect two clear patterns of genome size 

evolution to emerge. First, the absolute rate of genome size evolution should be 

positively correlated with genome size, while the variance of the underlying evolutionary 

rate should clearly deviate from the ½ normal distribution predicted under Brownian 

evolution. Second, if genome size data were proportionally transformed a-priori (Log10), 

thus removing the dependency of the underlying evolutionary rate variance on the 

preceding phenotype, the absolute rate of genome size evolution should show no 

correlation to genome size. Furthermore, the proportional transformation should result in 

a ½ normal variance of the underlying evolutionary rate, thus approximating the simple 

Brownian model. 

We estimated the rate of genome size evolution in eukaryotes using the 

phylogenetic contrast method. This method uses a local maximum likelihood estimation 

of a phenotypic trait (genome size) at each node in a tree based on the trait at its tips. The 

main tree in this analysis is based on 18 S rDNA sequences (Figure 1). A contrast is the 

quantitative difference between the genome sizes of the subtending branches for each 

node, standardized to their evolutionary distance based on the subtending branch lengths. 

The absolute value of this standardized contrast represents an estimate of the underlying 

rate of genome size evolution, based on divergence from a common ancestor as long as 

the mutation rate of the 18 S rDNA sequence and genome size change are not directly 

coupled (i.e. branch length is not correlated to genome size) (Garland Jr. 1992). In our 

analysis, there was no such correlation; however, we emphasize that the rates inferred in 

this method are relative, as the tree is clocked in the units of 18 S rDNA evolution and 

not in either absolute or generation time. However, even though the 18 S rDNA mutation  
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Figure 5.1. Maximum likelihood tree based on 18s sequences built using PHYML. 

Taxonomic groups highlighted in bold were analyzed for genome size evolution. 

Accession numbers of the 18 S rDNA sequences used in this analysis are given. Inset: 

Alternative eukaryotic tree based on 31 orthologs that was used to verify the general 

trend of genome size evolution inferred from the 18 S rDNA tree (Ciccarelli et al. 2006).  
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rates do vary among taxonomic groups, this variation likely has minimal effects on the 

estimation of genome size evolution because genome size varies by multiple orders of 

magnitude while mutation rates in the 18 S rDNA sequence vary by less than one order of 

magnitude. To determine empirically if the estimation of genome size evolution was 

significantly influenced by variable mutation rate in the 18 S rDNA gene, we also 

estimated the rate of genome size evolution using a smaller (23 species), published 

eukaryotic tree based on 31 concatenated orthologs (Ciccarelli et al. 2006).  

We examined the relationship between genome size and the absolute value of 

standardized contrasts (i.e. absolute magnitude of the rate of divergence) in two ways. 

First, the maximum likelihood estimation of genome size at each node was compared to 

the contrast calculated at each node for the whole 18 S rDNA tree and for the 31-ortholog 

tree (Figure 2A). Second, the 18 S rDNA tree was divided into 20 traditionally 

recognized taxonomic sub-trees, from which the median transformed genome size and 

median contrast for each sub-tree was taken as the representative for the group (Table 1, 

Figure 2B). The 31-ortholog tree was not divided because of its small size. These 

analyses show a significant positive relationship between initial or median genome size 

and the rate of genome size evolution, while analyses of the distribution of the absolute 

value of the contrasts reveal a significant deviation from a ½ normal distribution as 

predicted by the Brownian model (Figure 3). In addition, the pattern of genome size 

evolution inferred from the 18 S rDNA tree and the 31-ortholog tree are consistent with 

each other, indicating that variance in the mutation rate in the 18 S rDNA tree does not 

significantly influence the rate estimate of genome size evolution in eukaryotes (Figure 

2A).  
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Table 5.2. Number of species in each group analyzed from the 18 S rDNA tree. 

Taxonomic Group N 
Streptophyta (Green Plants) 37 
     Bryophyta (Mosses)   9 
     Moniliformopses (Horse Tails)   6 
     Magnioliophyta (Angiosperms) 12 
     Gymnosperms 10 
          Coniferopsida   7 
Chlorophyta (Green Algae) 23 
Dinophyceae 12 
Stramenopiles (Heterokonts) 23 
     Bacillariophyta (Diatoms) 12 
     Pelagophyceae   6 
Haptophyceae 11 
Metazoa 52 
     Vertebrata 33 
          Mammalia   9 
          Aves (Birds)   7 
          Teleostei (Bony Fish)   7 
     Arthropoda 14 
          Crustacea   8 
          Insecta   6 

 

An alternative and more direct test of proportional genome size evolution 

involves an a-priori transformation of the genome size data, thus removing any 

proportional dependency between the rate of genome size evolution and genome size. 

Comparisons of Log10 transformed genome size and their calculated contrasts reveal no 

significant correlation (Figure 4), indicating that the underlying specific (i.e., 

proportional) rate of genome size evolution is independent of genome size. Again, 

estimates of the rate of the Log10 transformed genome size evolution are consistent 

between the 18 S rDNA tree and the 31-ortholog tree. The analysis of the distribution of 

the contrasts calculated from Log10 transformed genome size also approximate a ½ 

normal distribution, thus fitting the Brownian model of evolution quite well (Figure 5). 

This indicates that the dominant mode of genome size evolution is proportional, with the  
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Figure 5.2. A) A tree-wise analysis of the nodal estimated genome size and the 

calculated contrast at each node from the 18 S rDNA tree (black dots) and the 31-

ortholog tree (red dots). Estimations from both trees indicate that as genome size 

increases, the rate of evolution of genome size increases (shown on Log10 axes for 

plotting purposes). B) Distribution of the median absolute contrast and the median 

genome size of the 20 traditionally recognized taxonomic groups from the 18 S rDNA 

tree. Bars represent 95% bootstrapped confidence intervals. Again, a clear positive 

relationship between genome size and the rate of genome size evolution is evident 

(shown on Log10 axes for plotting purposes). 
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Figure 5.3. A) Distribution of the absolute value of the standardized contrasts from the 

18 S rDNA tree showing a strong deviation from the ½ normal distribution expected from 

a phenotypic trait under Brownian evolution. A strong deviation would be expected for a 

trait under proportional evolution. B) Quantile distribution of the absolute value of the 

standardized contrasts. These contrasts do not show a near linear relationship to the 

positive quantile standard deviates, indicating a strong deviation from a ½ normal 

distribution, which is expected for a trait under proportional evolution. 
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Figure 5.4. A-priori Log10 transformation of genome size removes the proportional effect 

of genome size on the rate of genome size evolution so that neither, A) a tree-wise 

analysis of the nodal estimated genome size and the calculated contrast at each node, nor 

B), the distribution of the median absolute contrast and the median genome size of 20 

traditionally recognized taxonomic groups show a significant correlation. Bars represent 

95% bootstrapped confidence intervals. As in Figure 3A, red dots represent estimations 

from the 31ortholog tree and black dots represent estimations from the 18 S rDNA tree. 
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Figure 5.5.  A) Distribution of the absolute value of the standardized contrasts calculated 

from Log10 transformed genome size and the 18 S rDNA tree. This calculation shows 

approximately a ½ normal distribution expected from a phenotypic trait under Brownian 

evolution. B) Quantile distribution of the absolute value of the standardized contrasts 

calculated from Log10 transformed genome size data. These contrasts show a near linear 

relationship to the positive quantile standard deviates, indicating the expected ½ normal 

distribution of the contrasts for a phenotypic trait under Brownian evolution. 
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tempo increasing with genome size. Hence, in eukaryotes, the larger the genome, the 

faster its size is evolving. 

Traditionally, the paucity of large genomes in eukaryotes has been interpreted as a 

universal selection against this trait, yet precise descriptions of the specific selection 

pressures against large genomes are admittedly indirect (Vinogradov 2004; Knight et al. 

2005). This is not to say that there are no real reductive selection pressures on genome 

size in specific instances; loss of DNA in organisms co-opted as organelles (i.e., 

mitochondria and plastids) and in organisms with parasitic life histories suggests that 

there could be strong selective forces on genome size (Cavalier-Smith 2005). However, it 

is not clear if these reductions are due to the inherently higher fitness of reduced genome 

size, or to the apparent inability of mobile elements to flourish in asexual organisms 

(Arkhipova and Meselson 2000; Wright and Finnegan 2001). The observed anti-

correlations between environmental factors, extinction rates and genome size in some 

eukaryotic groups also suggest that natural selection may act against species with large 

genomes, possibly at higher taxonomic levels (Knight and Ackerly 2002; Vinogradov 

2004; Knight et al. 2005). However, it is not clear whether such selection is necessary or 

sufficient to generate the observed skew in the distribution of genome sizes in eukaryotes. 

Here we offer an alternative explanation for the lack of large eukaryotic genomes that 

does not rely on selection acting on genome size.  

We suggest that proportional evolution of genome size necessarily leads to the 

skewed distribution of genome sizes in nature. For instance, let us consider a fixed 

normal positive distribution, with a mean of 1 and bounded at 0, that represents all the 

possible changes in genome size for all genomes. For a specific genome at a given time 
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step, either a stochastic or selective process produces a single variate draw from this 

distribution at each time step. However, the effect the variate draw has on genome size 

change is a multiple of genome size. Therefore, the effect of the variate draw at each time 

step on small genomes is much less than for large genomes. In short, under proportional 

evolution, it is more difficult for small genomes to become and stay large, and more 

likely for large genomes to become and stay small. Therefore, by virtue of proportional 

evolution, which integrates both random and selective forces, we expect far more small 

genomes than large genomes in eukaryotes. This corroborates the observation that 

eukaryote families eukaryotes characterized by large genomes tend to have a much larger 

range of genome sizes than families with small genomes (Hinegardner 1972), and the 

recent suggestion that it is difficult for small genomes to increase in size at all after a 

prolonged phase of genome reduction (Ciccarelli et al. 2006). The general expectation of 

proportional evolution is that the distribution of a trait under this mode of evolution 

should approximate log-normality after sufficiently long periods of time (Lewontin and 

Cohen 1969). Eukaryotes are thought to be between 1.45-2 billion years old (Embley and 

Martin 2006), thus it is a reasonable expectation that large eukaryotic genomes are rare 

not because of a universal selection pressure against them, but because of the underlying 

molecular mechanics that drive the proportional evolution of genome size. The 

distribution of genome sizes used in this analysis (Figure 6) support this hypothesis. 

Similar trends in genome size distribution have also been noted in Teleosts (Hinegardner 

1972), Angiosperms (Knight et al. 2005) and Metazoans (Gregory 2005). 

Despite the small sample size for each of the taxonomic groups, there appear to be 

some interesting trends in these specific rates of genome size evolution (Figure 4B). For  
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Figure 5.6. Distribution of genome sizes used in this analysis in A) linear space and B) 

logarithmic space exhibit a log-normal distribution as predicted by proportional evolution 

integrated over long time periods. 
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example, bird genomes have been hypothesized to evolve at a slower rate compared to 

other eukaryotes (Gregory 2002). However, our analysis suggests their rate of genome 

size evolution is not especially slow, but is actually near the expected rate, if the 

underlying proportionality of genome size evolution is considered. Furthermore, our 

analysis suggests that only Magnoliophyta and Bacillariophyta genomes evolve at 

statistically significantly higher specific rates than the other eukaryotic groups, possibly 

due to frequent polyploidy (Soltis and Soltis 1999; Chepurnov et al. 2002). It should be 

noted, however, that because the main effect on the rate of genome size evolution is 

removed via a-priori logarithmic transformation of genome size, it is also possible that 

inter-group differences in 18 S rDNA mutation rates influence estimates of the specific 

rates of genome size evolution. While the lack of statistical significance does not imply 

the true lack of the differences among or within species groups because of small sample 

size, future investigations of genome size evolution will need to take into account the 

dominance of the proportional mode of evolution of genome size before inferring 

unusually fast or slow patterns of genome size evolution. 

Our results suggest the tempo of genome size evolution is positively correlated to 

genome size across broad eukaryotic diversity. This relationship is consistent with a 

proportional model of genome size change as the dominant mode of genome evolution. 

Furthermore, the proportional evolution of genomes provides an alternative explanation 

for the distribution of genome size in nature and is not reliant on a universal selection 

pressure against large genomes. Of the taxa examined here, none appeared to violate 

proportional genome size evolution; therefore, we conclude that taxa-specific selection 

pressures on genome size must operate within the umbrella of proportionality.  
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5.4. Methods 

5.4.1. Tree Building and Analysis 

There are two trees used in this analysis. The first is based on 18 S rDNA sequences that 

simultaneously allowed for broad coverage across the eukaryotic tree of life, as well as 

incorporated variable mutation rates in these sequences associated with various 

reproductive strategies and life histories. Therefore, the rates of evolution are in terms of 

18 S rDNA divergence. These sequences were first automatically aligned using ClustalX 

and then the alignment was hand-edited. A Maximum Likelihood tree was computed 

using PHYML (GTR model, 1000 bootstraps). See http://atgc.lirmm.fr/phyml/. The 

second tree used in this analysis is a small published eukaryotic tree estimated from 31 

concatenated orthologs (Ciccarelli et al. 2006). The main purpose of this tree was to 

determine if the inherent variation in 18 S rDNA mutation rates significantly skewed our 

estimation of genome size evolution. Figures 2A and 4A both indicate that the overall 

trend of proportional genome evolution in eukaryotes is evident from both trees.  

Genome size (1C values) estimates for the 18s rDNA tree come from various 

literature (Shuter et al. 1983; Veldhuis et al. 1997) and web sources (Appendix 1). These 

sources tabulate genome sizes from other research efforts, and have those references 

within. Most eukaryotic genome size estimates are from only a few taxanomic groups 

(namely green plants and animals). The goal of this study is to look at the broad scale 

pattern of eukaryotic genome size evolution, therefore, not all available estimates of 

genome size were used, in favor of a more even distribution of species from across the 

eukaryotic tree. From the two largest databases of genome size, the Kew database 

http://www.kew.org/cval/homepage.html and the Animal Genome Size Database 

 

http://atgc.lirmm.fr/phyml/
http://www.kew.org/cval/homepage.html
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http://www.genomesize.com/, a random number generator was used to pick 6-10 species 

without replacement. Clearly, not all species or taxanomic groups could be included in 

this type of analysis, however we feel we achieved broad taxanomic coverage of the 

eukaryotic domain. Genome size estimates for the 31-ortholog tree also come from 

various sources (Appendix 2). This tree does have some overlap with the 18 S rDNA tree, 

but also includes some parasitic eukaryotes not included in the 18 S rDNA tree.  

Standardized independent contrasts were calculated for the 20 taxonomic groups 

in Table 1 using the Analyses of Phylogenetics and Evolution Package (Paradis et al. 

2004) in the statistical program R http://www.R-project.org. 

5.4.2. Regression Analysis 

For Figure 2A,B, the data are shown on a Log10 transformed axis, but the statistics were 

done on the linear data. For Figure 2A, a standard OLS regression of the two variables 

indicated a significant positive correlation (R2 = 0.67, P << 0.001). However, the local 

maximum likelihood estimations of genome size at each node are not independent of 

each other, since the estimation of the genome size at any node depends on the distal 

nodes above it, therefore making a standard P value unreliable. Hence, to determine if the 

positive correlation was significant, we used the PDSIMUL module of the PDAP 

program to simulate proportional evolution of genome size (Garland Jr. et al. 1993). 

Parameterization of the model was based on the distribution of the genome sizes and the 

tree topology based on the 18 S rDNA divergence used in this analysis. Correlations 

computed from 1000 Monte Carlo simulations of proportional evolution of genome sizes 

were used to estimate the significance of the of the OLS correlation coefficient computed 

in Figure 2A. The correlation fell within the 95% confidence interval of the expected 

 

http://www.genomesize.com/
http://www.r-project.org/
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correlation between the nodal estimation of genome size and the absolute value of the 

standardized contrast (P = 0.226), indicating the trend in Figure 2A was not significantly 

different than what would be expected under proportional evolution of genome size. Non-

independence of regression variables was also taken into account for Figure 2B due to the 

hierarchical nature of the sub groups considered. For example, Vertebrata are not 

independent of Metazoa because Metazoa subsumes Vertebrata. Therefore, regression 

analysis was done only on the medians of the mutually exclusive sub groups (R2  = 0.84, 

P << 0.001).  The same statistical precautions were taken for Figure 4A,B, which was 

based on a-priori Log10 transforming genome size. For Figure 4A, a standard OLS 

regression showed no significant relationship (R2 = 0.021, P = 0.057). Monte Carlo 

simulation of proportional evolution of genome size indicated that the OLS correlation 

fell within the 95% confidence interval of the expected correlation between the nodal 

estimation of Log10 genome size and the absolute value of the standardized contrast (P = 

0.137), indicating the trend in Fig 4A was not significantly different than what would be 

expected under proportional evolution of genome size. For Figure 4B, the median values 

of the mutually exclusive sub-groups showed no significant correlation (R2 = 0.006, P = 

0.787). While figures 2B and 4B affirm the overall proportional relationship between 

genome size and the rate of genome size evolution, we emphasize that correlation of 

medians should be interpreted with caution and therefore should be treated as visual 

heuristic companions to Figures 2A and 4A. 
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6.0. Summary and Conclusions 

  Geological records point to marine phytoplankton as major players in establishing 

Earth’s climate. Because of this, much weight has been given to understanding the 

evolutionary trajectory of marine phytoplankton. Geological records and computer 

modeling point to turbulent continental shelves as major drivers of diatom evolution, 

however what the particular mechanisms of diatom evolution are on the shelf remain 

occluded because i) an accurate picture of continental shelf dynamics required intensive 

sampling and ii) whether or not a major driver of evolution could respond on the same 

time scales as the shelf dynamic. In this work, I attempted to tackle both of these issues to 

move toward a synthesis between inferences drawn from geological records and what can 

currently be observed in the coastal ocean. 

 In chapters 2-3, I take advantage of the NEOS observing system, which provided 

me a well-sampled coastal ocean. I integrated optical parameters as indicators of 

continental shelf dynamics and produced the first objective classifying scheme for the 

coastal ocean. In these efforts we found that optical parameters in the coastal ocean 

significantly mimic hydrography. Because they are quasi-conservative, they were useful 

in delineating particular kinds of water masses that are encountered by diatoms. This 

method not only elucidated the turbulent nature of the coastal ocean, but also provided an 

objective statistic to define the coastal ocean environment. Analysis of the continental 

shelf in this manner revealed that nutrient pulses to the shelf were highly episodic. 

 In chapters 4-5, I expose a diatom to highly episodic nitrogen regimes and 

determine for the first time, a copia-like retrotransposon in a diatom responds to nitrogen 

stress. Retrotransposons are major drivers of evolution. Therefore, the upregulation of the 
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copia transcription indicates that there is a major evolutionary force capable of acting on 

the same time scales as the inherent shelf dynamic. Furthermore, I investigate what the 

net effect of retrotransposon and other DNA indels have on eukaryotic genomes. 

Comparative analysis of the rate of genome evolution in response to these indels indicate 

that diatoms possibly have one of the fastest evolving genomes. 
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Appendix I 

Genome sizes and accession numbers for the sequences used for the 18 S rDNA tree in 

Chapter 5. When necessary, the number of base pairs was estimated from the mass of 

DNA using: Base Pairs = DNA Mass (pg)*0.978 X 109. Also, when multiple genome 

sizes were given from different cell types, the mean value was used. 

Species Accession Number Genome Size (Base Pairs) Source 
Fissidens taxifolius X95934.1 3.2E+08 Royal Botanic Gardens Kew 

Ceratodon purpureus Y08989.1 3.8E+08 Royal Botanic Gardens Kew 
Eurhynchium hians U18501.1 4.2E+08 Royal Botanic Gardens Kew 
Hypnum lindbergii AF229922.1 3.0E+08 Royal Botanic Gardens Kew 

Cratoneuron commutatum Y15482.1 3.0E+08 Royal Botanic Gardens Kew 
Mnium hornum  X80985.1 8.6E+08 Royal Botanic Gardens Kew 

Plagiomnium affine AF023711.1 8.8E+08 Royal Botanic Gardens Kew 
Atrichum undulatum  X85093.1 7.2E+08 Royal Botanic Gardens Kew 

Polytrichum formosum X80982.1 5.2E+08 Royal Botanic Gardens Kew 
Lygodium japonicum AB001538.1 1.1E+10 Royal Botanic Gardens Kew 
Dicksonia antarctica U18624.2 1.1E+10 Royal Botanic Gardens Kew 
Pteridium aquilinum U18628.1 6.3E+09 Royal Botanic Gardens Kew 

Angiopteris lygodiifolia D85301.1 7.0E+09 Royal Botanic Gardens Kew 
Loranthus europaeus L24153.1 8.1E+09 Royal Botanic Gardens Kew 
Ranunculus sardous L24092.1 3.2E+09 Royal Botanic Gardens Kew 
Arabidopsis thaliana X16077.1 1.3E+08 Lynch and Conery 2003 

Punica granatum U38311.1 7.1E+08 Royal Botanic Gardens Kew 
Bougainvillea glabra AF206873.1 4.0E+09 Royal Botanic Gardens Kew 

Oryza sativa AF069218.1 4.7E+08 Lynch and Conery 2003 
Zea mays AF168884.1 2.7E+09 Royal Botanic Gardens Kew 

Tradescantia ohiensis AF069213.1 1.8E+10 Royal Botanic Gardens Kew 
Oncidium excavatum U42791.1 2.1E+09 Royal Botanic Gardens Kew 

Pistia stratiotes AF168869.1 3.2E+08 Royal Botanic Gardens Kew 
Chloranthus spicatus D29787.1 3.5E+09 Royal Botanic Gardens Kew 
Bulbine succulenta AF206876.1 1.1E+10 Royal Botanic Gardens Kew 

Welwitschia mirabilis AF207059.1 7.1E+09 Royal Botanic Gardens Kew 
Gnetum costatum AY755661.1 3.9E+09 Royal Botanic Gardens Kew 
Gnetum gnemon AY755660.1 3.8E+09 Royal Botanic Gardens Kew 

Cryptomeria japonica D85304.1 1.1E+10 Royal Botanic Gardens Kew 
Taiwania cryptomerioides D38250.1 1.9E+10 Royal Botanic Gardens Kew 

Phyllocladus trichomonoides D38244.1 9.8E+09 Royal Botanic Gardens Kew 
Lepidothamnus laxifolius AF342755.1 6.6E+09 Royal Botanic Gardens Kew 

Halocarpus biformis AF342762.1 1.1E+10 Royal Botanic Gardens Kew 
Lagarostrobos colensoi AF342753.1 1.4E+10 Royal Botanic Gardens Kew 

Pinus elliottii D38245.1 2.3E+10 Royal Botanic Gardens Kew 
Psilotum nudum X81963.1 7.1E+10 Royal Botanic Gardens Kew 
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Equisetum hyemale U18500.1 1.2E+10 Royal Botanic Gardens Kew 
Pycnococcus sp. 1 AF122889.1 4.0E+08 Veldhuis et al 1997 
Pycnococcus sp. 2 AY425305.1 1.5E+08 Veldhuis et al 1997 

unidentified prasinophyte AJ010406.1 4.3E+08 Veldhuis et al 1997 
Nannochloris atomus AB080303.1 1.2E+08 Veldhuis et al 1997 

Prototheca zopfii X63519.1 6.7E+07 Shuter et al 1983 
Ulva rigida AJ005414.1 1.5E+08 Royal Botanic Gardens Kew 

Cladophora sericea  Z35320.1 2.9E+08 Royal Botanic Gardens Kew 
Anadyomene stellata AF510147.1 1.3E+09 Royal Botanic Gardens Kew 

Cladophoropsis macromeres AF510144.1 2.0E+09 Royal Botanic Gardens Kew 
Acetabularia major  Z33462.1 1.2E+09 Royal Botanic Gardens Kew 
Parvocaulis parvula  Z33471.1 4.4E+08 Veldhuis et al 1997 
Halicoryne wrightii AY165786.1 9.3E+08 Royal Botanic Gardens Kew 

Coccoid green alga 1 U40921.1 6.2E+07 Veldhuis et al 1997 
Pyramimonas parkeae AB017124.3 6.7E+09 Veldhuis et al 1997 

Micromonas pusilla AY425320.1 1.1E+08 Veldhuis et al 1997 
Mantoniella squamata  X73999.1 6.6E+08 Veldhuis et al 1997 

Micromonas sp. AJ010408.1 1.2E+08 Veldhuis et al 1997 
Prasinococcus sp. 1 AF203403.1 4.5E+08 Veldhuis et al 1997 

Prasinococcus capsulatus AB058384.1 1.1E+08 Veldhuis et al 1997 
Coccoid green alga 2 U40919.1 2.6E+08 Veldhuis et al 1997 
Prasinococcus sp. 2 AF203401.1 5.1E+08 Veldhuis et al 1997 

Coccoid prasinophyte 1 AF203402.1 7.2E+07 Veldhuis et al 1997 
Coccoid prasinophyte 2 AF203399.1 9.9E+07 Veldhuis et al 1997 

Storeatula major U53130.1 5.0E+09 Veldhuis et al 1997 
Rhodomonas sp. AB183594.1 1.7E+09 Veldhuis et al 1997 

Proteomonas sulcata AJ007285.1 3.0E+09 Veldhuis et al 1997 
Hemiselmis rufescens AJ007283.1 4.8E+08 Veldhuis et al 1997 
Akashiwo sanguinea AB183672.1 6.8E+10 Shuter et al 1983 

Amphidinium carterae AF274251.1 1.1E+10 Veldhuis et al 1997 
Scrippsiella sweeneyae AF274276.1 1.4E+10 Shuter et al 1983 
Scrippsiella trochoidea AJ415515.1 1.6E+10 Shuter et al 1983 

Heterocapsa niei AF274265.1 5.8E+10 Veldhuis et al 1997 
Heterocapsa triquetra AF022198.1 2.2E+10 Veldhuis et al 1997 

Prorocentrum minimum AJ415520.1 3.9E+10 Veldhuis et al 1997 
Prorocentrum micans AJ415519.1 2.4E+11 Veldhuis et al 1997 

Karena brevis AF352822.1 4.8E+10 Shuter et al 1983 
Gonyaulax polyedra AJ415511.1 1.3E+11 Shuter et al 1983 

Alexandrium catenella AJ535392.1 1.9E+11 Veldhuis et al 1997 
Gymnodinium simplex U41086.1 5.0E+08 Shuter et al 1983 
Navicula pelliculosa AY485454.1 6.8E+07 Shuter et al 1983 

Phaeodactylum tricornutum AY485459.1 2.4E+08 Veldhuis et al 1997 
Cylindrotheca fusiformis AY485457.1 4.1E+08 Shuter et al 1983 
Thalassiosira eccentrica  X85396.1 2.5E+10 Shuter et al 1983 

Thalassiosira rotula AF462059.1 5.0E+09 Shuter et al 1983 
Skeletonema costatum AY485473.1 3.2E+08 Shuter et al 1983 

Thalassiosira pseudonana AY485452.1 3.8E+08 Veldhuis et al 1997 
Cyclotella meneghiniana AJ535172.1 1.2E+09 Veldhuis et al 1997 
Thalassiosira weissflogii AY485445.1 5.5E+09 Veldhuis et al 1997 
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Minutocellus polymorphus AY485478.1 1.4E+09 Veldhuis et al 1997 
Chaetoceros muelleri AY485453.1 5.7E+08 Veldhuis et al 1997 

Ditylum brightwellii AY485444.1 1.2E+10 Veldhuis et al 1997 
Nannochloropsis gaditana AF045039.1 1.6E+07 Veldhuis et al 1997 

Nannochloropsis sp. U41094.1 1.8E+07 Veldhuis et al 1997 
Ochromonas sp. 1 U42382.1 4.8E+08 Veldhuis et al 1997 
Ochromonas sp. 2 U42381.1 5.4E+08 Veldhuis et al 1997 

Heterosigma carterae U41650.1 5.5E+09 Veldhuis et al 1997 
Aureoumbra lagunensis U40258.1 9.8E+07 Veldhuis et al 1997 
Coccoid pelagophyte 1 U40926.1 2.5E+08 Veldhuis et al 1997 
Coccoid pelagophyte 2 U40927.1 1.3E+08 Veldhuis et al 1997 
Pelagococcus subviridis U14386.1 1.9E+08 Veldhuis et al 1997 
Pelagomonas calceolata U14389.1 2.5E+08 Veldhuis et al 1997 

Aureococcus anophagefferens AF117778.1 2.6E+08 Veldhuis et al 1997 
Coccoid haptophyte U40924.1 3.5E+08 Veldhuis et al 1997 

Emiliania huxleyi M87327.2 4.5E+08 Veldhuis et al 1997 
Pleurochrysis carterae AJ544120.1 3.3E+09 Veldhuis et al 1997 

Cruciplaccolithus neohelis AJ246262.1 7.9E+08 Veldhuis et al 1997 
Phaeocystis globosa AF182110.1 1.1E+09 Veldhuis et al 1997 

Phaeocystis sp. AJ278035.1 8.2E+08 Veldhuis et al 1997 
Phaeocystis antarctica X77477.1 7.3E+08 Veldhuis et al 1997 

Imantonia rotunda AJ246267.1 2.4E+08 Veldhuis et al 1997 
Chrysochromulina kappa AJ246271.1 6.0E+08 Veldhuis et al 1997 

Chrysochromulina AJ004868.1 5.9E+09 Veldhuis et al 1997 
Pavlova lutheri AF106053.1 6.7E+08 Veldhuis et al 1997 

Grateloupia luxurians U33132.1 2.0E+08 Royal Botanic Gardens Kew 
Gracilaria tikvahiae  M33640.1 2.0E+08 Royal Botanic Gardens Kew 
Spongites yendoi U60948.1 1.5E+08 Royal Botanic Gardens Kew 

Saccharomyces cerevisiae AY790536.1 1.2E+07 Lynch and Conery 2003 
Neurospora crassa AY046271.1 4.3E+07 Lynch and Conery 2003 

Schizosaccharomyces pombe AY251644.1 1.4E+07 Lynch and Conery 2003 
Oryctolagus cuniculus  X06778.1 3.0E+09 Animal Genome Size Data Base

Rattus norvegicus  M11188.1 2.7E+09 Lynch and Conery 2003 
Mus musculus  X00686.1 2.5E+09 Lynch and Conery 2003 
Equus caballus AJ311673.1 3.1E+09 Animal Genome Size Data Base
Homo sapiens  M10098.1 2.9E+09 Lynch and Conery 2003 

Erinaceus europaeus AJ311675.1 3.5E+09 Animal Genome Size Data Base
Vombatus ursinus AJ311678.1 3.8E+09 Animal Genome Size Data Base

Didelphis virginiana AJ311677.1 4.0E+09 Animal Genome Size Data Base
Ornithorhynchus anatinus AJ311679.1 2.9E+09 Animal Genome Size Data Base

Struthio camelus AF173607.1 2.1E+09 Animal Genome Size Data Base
Meleagris gallopavo AJ419877.1 1.5E+09 Animal Genome Size Data Base
Anas platyrhynchos AF173614.1 1.3E+09 Animal Genome Size Data Base

Melopsittacus undulatus AF173629.1 1.2E+09 Animal Genome Size Data Base
Neophron percnopterus AF173633.1 1.5E+09 Animal Genome Size Data Base

Columba livia AF173630.1 1.2E+09 Animal Genome Size Data Base
Gallus gallus AF173612.1 1.2E+09 Animal Genome Size Data Base

Crocodylus niloticus AJ311672.1 3.2E+09 Animal Genome Size Data Base
Alligator mississippiensis AF173605.1 2.4E+09 Animal Genome Size Data Base
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Psammodromus algirus AY217918.1 2.1E+09 Animal Genome Size Data Base
Eumeces inexpectatus AY217939.1 2.5E+09 Animal Genome Size Data Base

Dalatias licha AY049827.1 8.7E+09 Animal Genome Size Data Base
Squalus acanthias M91179.1 6.6E+09 Animal Genome Size Data Base

Triakis semifasciata AF212180.2 4.6E+09 Animal Genome Size Data Base
Galeocerdo cuvier AY049833.1 4.6E+09 Animal Genome Size Data Base

Hemiscyllium ocellatum AY049835.1 5.2E+09 Animal Genome Size Data Base
Latimeria chalumnae L11288.1 4.1E+09 Animal Genome Size Data Base
Polyodon spathula AF188371.1 1.9E+09 Animal Genome Size Data Base

Fundulus heteroclitus M91180.1 1.3E+09 Animal Genome Size Data Base
Ictalurus punctatus AF021880.1 9.7E+08 Animal Genome Size Data Base

Gadus morhua AF518205.1 6.3E+08 Animal Genome Size Data Base
Gobius paganellus AF518189.1 4.0E+08 Animal Genome Size Data Base

Dissostichus mawsoni AF518188.1 9.7E+08 Animal Genome Size Data Base
Oncorhynchus kisutch AF030250.1 2.7E+09 Animal Genome Size Data Base

Eptatretus stouti M97572.1 2.6E+09 Animal Genome Size Data Base
Myxine glutinosa M97574.1 4.1E+09 Animal Genome Size Data Base
Ciona intestinalis AB013017.1 1.6E+08 Lynch and Conery 2003 

Strongylocentrotus purpuratus L28056.1 8.0E+08 Lynch and Conery 2003 
Caenorhabditis elegans AY268117.1 1.0E+08 Lynch and Conery 2003 

Tigriopus californicus AF363306.1 2.4E+08 Animal Genome Size Data Base
Pagurus longicarpus AF436018.1 4.8E+09 Animal Genome Size Data Base

Orconectes virilis AF235965.1 4.5E+09 Animal Genome Size Data Base
Nephrops norvegicus Y14812.1 4.7E+09 Animal Genome Size Data Base

Scyllarus arctus AF498677.1 1.9E+09 Animal Genome Size Data Base
Palinurus elephas AF498678.1 4.1E+09 Animal Genome Size Data Base
Scyllarides latus AF498669.1 6.7E+09 Animal Genome Size Data Base
Squilla empusa L81946.1 5.7E+09 Animal Genome Size Data Base

Locusta migratoria AF370793.1 5.6E+09 Animal Genome Size Data Base
Blattella germanica AF220573.1 1.9E+09 Animal Genome Size Data Base
Cassida rubiginosa AY676687.1 9.7E+08 Animal Genome Size Data Base
Chrysolina affinis AJ622062.1 8.0E+08 Animal Genome Size Data Base

Coccidula rufa AF427603.1 7.0E+08 Animal Genome Size Data Base
Apis mellifera AY703484.1 2.1E+08 Animal Genome Size Data Base
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Appendix II 

Genome sizes used for the 31-ortholog tree in Chapter 5. 
 

Species Genome Size (Base Pairs) Source 
Thalassiosira pseudonana 3.4E+07 JGI 
Cryptosporidium hominis 9.2E+06 NCBI 

Plasmodium falciparum 2.3E+07 
http://gib.genes.nig.ac.jp/single/main.php?spid=Pfal_3D

7 

Oryza sativa 3.9E+08 
http://www.nature.com/nature/journal/v436/n7052/full/n

ature03895.html 
Arabidopsis thaliana 1.3E+08 Royal Botanic Gardens Kew 

Cyanidioschyzon merolae 1.7E+07 Nature. 2004 Apr 8;428(6983):653-7.
Dictyostelium discoideum 3.4E+07 Nature. 2005 May 5; 435(7038): 43–57.

Eremothecium gossypii 9.2E+06 
Science. 2004 Apr 9;304(5668):304-7. Epub 2004 Mar 

4.

Saccharomyces cerevisiae 1.2E+07 
http://www.ensembl.org/Saccharomyces_cerevisiae/ind

ex.html 

Schizosaccharomyces pombe 1.2E+07 
Nature 415, 871-880 (21 February 2002) | doi: 

10.1038/nature724 
Anopheles gambiae 2.2E+08 NCBI 

Drosophila melanogaster 1.8E+08 NCBI 
Takifugu rubripes 3.9E+08 http://www.ensembl.org/Fugu_rubripes/index.html 

Danio rerio 1.7E+09 http://www.ensembl.org/Danio_rerio/index.html 
 Rattus norvegicus 2.7E+09 http://www.ensembl.org/Rattus_norvegicus/index.html

Mus musculus 2.7E+09 http://www.ensembl.org/Mus_musculus/index.html 
Homo sapiens 3.4E+09 http://www.ensembl.org/Homo_sapiens/index.html 

Pan troglodytes 2.7E+09 http://www.ensembl.org/Pan_troglodytes/index.html 
Gallus gallus 1.1E+09 http://www.ensembl.org/Gallus_gallus/index.html 

Caenorhabditis elegans 1.0E+08 
http://www.ensembl.org/Caenorhabditis_elegans/index.

html 
Caenorhabditis briggsae 1.0E+08 NCBI 

 Leishmania major 3.3E+08 http://www.sanger.ac.uk/Projects/L_major/ 
Giardia lamblia 1.2E+07 NCBI 

 
 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15875012
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