Exploratory Glider Deployments Reveal Changes in the Upper
Oceanic Water Masses of the Caribbean Through-Flow

Joe Gradone

Walter Munk Commemorative Lecture

ATAY TTEE AAD ALK

Photo Credit: Dan Mele



WAVES ACROSS THE PACIFIC 1963

WAVBS

S PAGIFIC

Technology development
Work with locals 8
Synthesize a diverse large dataset ; ;
Small-scale - large-scale |

New Zealand / ; i Tutuila, Samoa

N =
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Caribbean Through-Flow is a chokepoint for
both AMOC return flow and subtropical gyre recirculation

9

40°N

30°N

20°N

10°N

OO

80°W 60°W 40°W 20°W 0°




Atlantic
Meridional
Overturning
Circulation




Why is the AMOC important?
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Heat Transport:
~25% of the northern
hemisphere’s northward
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Why is the AMOC important?
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Why is the AMOC important?
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Why is heat transport important?
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Why is heat transport important?
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Why is heat transport important?
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Why the Caribbean?
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Caribbean Through-Flow is a chokepoint for
both AMOC return flow and subtropical gyre recirculation
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Questions around and recent showing a
slowdown/collapse in the AMOC

nature communications
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The warming atmosphere is causing an arm of the
powerful Gulf Stream to weaken, some scientists fear.

By MOISES VELASQUEZ-MANOFF
and JEREMY WHITE
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Why the Caribbean?
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Caribbean Through-Flow is significantly
under-sampled!
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~20 years

No transport observations in the Caribbean Through-Flow in 20 years
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THE SLocuM MISSION

Narrative and lllustration
By Henry Stommel

The Slocum Mission Control Center on Nonamesset Island.

1989 Science Fiction

The payoff in increase
of knowledge often is
greatest the more
unconventional the
idea, especially when it
conflicts with collective

wisdom.

Each Slocum reports
into Mission Control via
satellite about six times

aday.

SLOCUM Glider
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Fig. 6: Schematic of Slocum, a small almost neu-
trally buoyant glider that moves vertically and
horizontally through the water driven by small
changes in buovancy. Steering is by control sur-
faces or internal center of gravity adjustment.



1999
First Slocum glider

Doug Webb deployed at Sea

At the Rutgers
| University Tuckerton
Marine Field Station

" N TELEDYNE
WEBB RESEARCH |



.

April 27, 2009

w,"‘

‘\ t/\wes

LS
.

YN & \) R\

— ‘ ' \ g ,“\\ 3
December 4, 2009 5 By

N

N‘I‘ A
»

\

¢
"

)
' A
1 195 2

5
i
Iy}

,"‘TEI.EDVNE
WEBB RESEARCH

Everywhereyoulook”

2009 First Atlantic Crossing



FEATURE RU-COOL Glider Fleet Totals

THE SLocuM MISSION

Total Deployments Active Deployments

711 207

Narrative and lllustration
By Henry Stommel

Distance Flown Glider Days

376,327 km @ 19,450 days

(9+ times around the earth) {53+ years)

The Slocum Mission Control Center on Nonamesset Island. 2 O 2 5 S u Stal n e d d e p I Oy m e n tS
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RESEARCH ARTICLE
10.1029/20221C019608

Key Points:

s Total transport and transport of South
Atlantic Water through the Anegada
Passage (AP) may be larger than
previously estimated

s The AP is a pathway for both Atlantic
Meridional Overturning Circulation
return flow and subtropical gyre
recirculation
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Upper Ocean Transport in the Anegada Passage From Multi-
Year Glider Surveys

J. C. Gradone! "', W. D. Wilson®* (), §. M. Glenn, and T. N. Miles!

!Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and
Biological Sciences, Rutgers University, New Brunswick, NJ, USA, “Center for Marine and Environmental Studies,
University of the Virgin Islands, St. Thomas, VI, USA, *Ocean and Coastal Observing—Virgin Islands, Inc, St. Thomas, VI,
USA
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(P rotation

Adapting for use on gliders:

Constrain solution using glider depth averaged velocity
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G H I O Search or jump to... Pull requests Issues Marketplace Explore
It u adone | Slocum-AD2CP

Issues Pull requests. c Projects wiki Security Insights Settings

©o Gotofile Code~ | About

Definitely a work in progress...

Open-Source Code. o

model
notebooks

referances.

https://qgithub.com/JGradone/Slocum-AD2CP

Releases.
gitignore

LICENSE

README.md

requiraments.txt

] setup.py
test_environment.py
Languages
tox.ini

Jupyter Notebook

README.md

sensor agnostic

This is definitely a work in progress but | want to try to keep my Slocum Glider AD2CP processing codes available
on GitHub and as up-to-date as | can handle.

]
Please don't hesitate to reach out to me at jgradone@marine.rutgers.edu with any questions or comments.
This repository was designed using Cookiecutter Data Science: https://drive jithub.jofcookiecutter-

Gradone et al. (2023)
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Calculating
Transport
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Scripps Director, Harald Sverdrup with
Walter on his graduation day (1946)
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AMOC balance conundrum:
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Florida Current:
~31 Sv

Schmitz and Richardson, 1991



AMOC balance conundrum:
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Florida Current:
~31 Sv

AMOC Strength: ~17 Sv

Cross-Equatorial MOC
return flow

Schmitz and Richardson, 1991



30°N§}

Gulf of
Mexico

25°N

20°N

15°N

10°N

- . "M "-l‘
Straits of

Caribbean Sea

\

)

¢

85°W

NY L . ’
* * Grenada Passage

»

Antigua Passage g .
Guadeloupe Passag * Lesser
Dominica Passage_Antilles
St. Lucia Passage =
St. Vincent Passageg
* _Windward

Passages

- 8

X -

Caribbean
Cross-Equatorial

Box Model

(17 Sv out)

- (11 Svin)

6 Sv remaining

Windwarq
ges

(Schmitz and Richardson, 1991;
Wilson and Johns, 1997; Rhein et al. 2005)



AMOC balance conundrum:

Anegada Passage has been suggested as a potential alternate pathway
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Determining Water Masses Origin

Isopycnal Water 30
Mass Analysis
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South Atlantic Water

Transport

Transport of SAW through AP
(1.66 Sv) is larger than
previously estimated (0O to
minimal Sv)
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Glider observations in passages spanning north to
south, a large gradient in water mass properties
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Glider observations in
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south, a large gradient in

water mass properties

THE
1000 G. UNGER VETLESEN
Anegada Passage FOUNDATION
+—2000
.: so c!m ‘,vyrn m!eo ma nos
AGOA
2 <
(] =8
-3500E E
-42508
000 .EF.,’ ‘ncmclre momLEnsﬂFelrii‘nglrsgss
=5750
—6500 15.5°N
r —500
Dominica Passage
15°N r —1000
14.5°N ) —2000
St. Lucia Passage
1aon| £ —3000
St. Vincent Passage, 4000
13.5°N|
—6000

61°W

62.5°W  62°W  61.5°W

Depth [meters]



Windward Passages Deployments (2023)

wcsanc t vary v
. cee . =1 mcmnfexos marinos S "‘TELEDYNE
A scientific machine surveys the g ] MARINE )
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@ 3
a collaboration between American scientists and the E G. UNGER VETLESEN
Agoa Sanctuary EE FOUNDATION
Field activities ) ( Scientific monitoring Martinique Lesser Antilles E :'
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October 05, 2022 :
Since Monday October 3, three American scientists have been hosted in the premises of the £ =
Agoa Sanctuary as part of an opportunistic collaboration. Our scientists are taking SO l‘l c tualre mammiféres mar ! ns
advantage of the deployment of an American glider in the waters of the French West Indies ¢ =< ANTILLES FRANCA'SES

to attach a hydrophone and test a data collection method.

Travis Miles, Joe Gradone, and Doug Wilson, American researchers from the University of the US Virgin Islands and Rutgers University in
New Jersey, are working on ocean water parameters. They are carrying out a mission in the South of the Antilles arc with the aim of
studying the heat transfers of currents coming from Brazil and entering the Caribbean. This mission also allows them to improve weather
models for predicting cyclones, the latter requiring precise water temperature to gain strength. To carry out this mission they use an
underwater glider, or glider in English.

The glider is an tellit ine that will
take measurements in the water column along its path. It carries
out programmed dives up to 1000 m deep during which its sensors
(oxygen, temperature, salinity) will record the characteristics of the
water masses depending on the depth. Each time it returns to the
surface, the glider sends the results of its dive to land via satellites.

Around the world, gliders are also used to study the chemistry of
the oceans and the animals that inhabit them. Equipping them
with hydrophones allows you to hear the animals that are on the
mission route: whale songs, sperm whale clicks or dolphin whistles.
The interest is then to obtain recordings of areas inaccessible by
boats, offshore, in the depths, while avoiding the sea conditions of
the hurricane season. Thus, this type of mission can help improve
knowledge on the distribution of cetaceans across the Caribbean .




Windward Passages Deployments (2023)
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Windward Passages Deployments (2023)
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DEEP-SEA RESEARCH
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PERGAMON Deep-Sea Research 1 49 (2002) 211-243 —_—
www.elsevier.com/locate/dsr

On the Atlantic inflow to the Caribbean Sea

William E. Johns**, Tamara L. Townsend®, David M. Fratantoni®,
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* Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
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Table 1

Transport estimates derived from shipboard occupations of the Caribbean Passages, afler Wilson and Johns (1997), updated with
results from 5 additional cruises. Not all passages were sampled on each cruise. Average transports and related statistics from all
available estimates for each passage are shown at the bottom. The quantity labeled “Mean™ is the average transport from only those
cruises with full water column directly velocity measurements (cruises 5 and later) the quantity labeled “Mean (all)” is the average of all
cruises including early ones where part of the deep flow in the passages was determined geostrophically. The former is used for the final
transport values in the paper, and the standard errors listed for each passage are also based on this data

Passage

Cruise Grenada St. Vineent St. Lucia Dominica Guadeloupe Antigua Anegada Mona

1 Dec 91 6.9 59 0.1

2 May 92 0.1 20 0.5

3 Sep 92 4.9 1.4 0.5

4 Dec 92 2.6 22 2.2

5 Jun 93 10.6 53 1.2

6 Apr 94 2.6 —0.6

7 Jul 94 58 52 2.0 —0.1 1.9 0.6 33

8 Dec 94 —0.2

9 Sep 95 54 28 32

10 Mar %6 4.0 —0.1 0.8 1.8 1.1 4.4 35 34

11 Jul 96 5.6 34 34 1.1 0.6 33 2.2 1.7

12 Jun 97 4.6 37 4.6 25 —0.3 34 2.0

13 Oct 98 6.7 32 =30 28 24 4.0 0.1
Mean 57+24 29+22 15424 l6+12 1.1+1.1 31415 25+14 26+1.2
Mean (all) 50428 32421 14420 14+1.1 L1£lL1 31415 25414 26412
Std. error 08 038 0.8 0.5 0.5 0.7 0.6 12

Windward Islands Leeward Islands
10.1+2.4 8.3+23

Lesser Antilles
18.4+4.7

Windward Island Passage
Monitoring Program
(WIPP)
1991-2001

85°EW  80°EW  75°EW  70°EW  65°EW  60°EW




Observations of Change
Glider (2020-2023)

VErsus

Windward Island Passage Monitoring
Program
(WIPP)
(1991-2001)
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Leveraging glider data + all other T/S
profiles in the Caribbean Through-Flow

o 2020
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Gradone et al. Submitted: Nature Scientific Reports



Observations of water mass changes

Warming
~0.2°C decade-!

Surface
freshening
~0.13 g kg
decade-!

Subsurface
salinification
~0.05 g kg!
decade-1

Surface density
reduction
~0.17 kg m-3

Increased
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1201 Trend: 4.7 k| cm~2 per Decade

Tropical Cyclone Heat Potential:
Q = pCyATAz
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Summary
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