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Outline

 Thermal habitat relationships with fisheries
« Fisheries habitats defined by satellite data

» Potential applications from surface and/or bottom current
measurements
— Fronts, prey aggregation
— Upwelling, divergence
— ldentifying source location of eDNA
— Larval dispersion and settlement
— Eddies
— Sediment/benthic disturbance
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Fish & The Environment
+  Fish metabolism, distribution, /<@
abundance, is highly coupled to -
currents, salinity, plankton, L

predators, prey, temperature, ... ¢.

Most terrestrial organisms

decoupled from atmosphere

dynamic propertic
The fluid is habitat

Figure 22. Food web of the northeast shelf Large marine ecosystem (NES LME). Adapted from Link
2002
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Approach Reglonal Habitat Models

NOAA US Fishery Data
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Black Sea Bass Habitat (Lab-Based Physmlogy)

slesinger: # Years January Habitat=0.5 (Trained Temperatures Only)
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Butterfish Habitat
Statistical Curve fit to Physiological Curve)

Habitat Suitabéity Index

c w
ROMS Botiom Tomgarature ('C)

Niche model: nonlinear extension of
Boltzmann-Arrhenius equation
(mechanistic basis in enzyme kinetics)

Water temperature
hindcast from
oceanographic model (ROMNS)
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o Butterfish Habitat
(Statistical Curve fit to Physiological Curve)
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Northeast Fisheries Science Center Reference Document 14-04
it /VSKP8043

Accounting for variability
in habitat available during

the survey decreased 58th Northeast Regional
. . Stock Assessment Workshop
UnCertalnty In the (58th SAW)

butterfish stock
assessment and led to
reope n i n g th e fi S h e ry- by the Northeast Fisheries Science Center

Assessment Report

TOR 3. Characterize oceanographic and habitat data as it pertains to butterfish

distribution and availability. If possible, integrate the results into the stock assessment
(TOR-5).
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39-5

Sturgeon mapped to water
masses classified based on
satellite-based surface 39
temperature and ocean color

385 2

Research Article & Open Access @O 38 =
B

Dynamic seascapes predict the marine occurrence of an
endangered species: Atlantic Sturgeon Acipenser oxyrinchus
oxyrinchus

Matthew W. Breece i%4 Dewayne A. Fox, Keith . Dunton, Mike G. Frisk, Adrian Jordaan, Matthew . Oliver

-74-2
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& @ Atlantic sturgeon risk of encounter () omwee

Model Details Climatologies

This product is developed for mature Atlantic Sturgeon using historic telemetry observations matched to date, bathymetry, and sea surface temperature and ocean color from

D a i | y ri S k m a p b a S e d NPP-VIIRS satellite. There are five regions (Delaware River, Upper Delaware Bay, Middle Delaware Bay, Lower Delaware Bay, and Atlantic Ocean) and each of them is divided into 5
meter depth bins.
on satellite data
. . Encounter Risk:
provided online and et e s

Date Selected 1 Day Forecast for 2 Day Forecast for 3 Day Forecast for

Via text for N 2020-06-03 2020-06-05 2020-06-06 ; 2020-06-07
endangered Stu rg eon b q NEW. JERSEY :_}H z NEW. JERSEY i ,hl NEW. JERSEY % NEW. JERSEY

* Vineland | * vineland * Vineland | *Vineland

ECOLOGICAL
APPLICATIONS

Article (3 Open Access @ @ @ @
A satellite-based mobile warning system to reduce
interactions with an endangered species

Select a Date to Update Plot  geece . w, b. A Fox, b. E. Haulses, I Wirgin, and M. J. Oliver. 2017. Satellite Driven Distribution Models of Endangered Atlantic

2020-06-03 = Sturgeon Occurrence in the Mid-Atlantic. ICES Journal of Marine Science fsx187.

Contact: Moliver@udel.edu, and Mwbreece@udel.edu University of Delaware 700 Pilottown Road Lewes, DE 19958, or
Ed.hale@state.de.us Delaware Division of Fish and Wildlife 3002 Bayside Drive Dover, DE 19901

Matthew W. Breece i, Matthew J. Oliver, Dewayne A. Fox, Edward A. Hale, Danielle E. Haulsee
Matthew Shatley, Steven ). Bograd, Elliott L. Hazen, Heather Welch

This information is also available on our website
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Critically endangered right
whales may occur more
frequently near strong
fronts between water
masses. Possible indicator
of prey aggregations.
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Vol. 438: 1-17, 2011
doi: 10.3354/meps09308

MARINE ECOLOGY PROGRESS SERIES

Mar Ecol Prog Ser Published October 5

OPEN
ACCESS

Ocean observatory data are useful for regional
habitat modeling of species with different vertical
habitat preferences

FEATURE ARTICLE

John Manderson'*, Laura Palamara?, Josh Kohut?, Matthew JI. Oliver®

Vol. 447: 15-30, 2012
doi: 10.3354/meps09496

MARINE ECOLOGY PROGRESS SERIES

Mar Ecol Prog Ser Published February 13

Improving habitat models by incorporating pelagic
measurements from coastal ocean observatories

Variables Spatial grain

Possible ecological effect

Data source

Sun's elevation
Geographic coordinates
Benthic data

Depth (u, SD)

Slope (4, SD)?

Aspect (SD)¢ "
Profile curvature (u, SD)¢ "

na
2 km

1.95 km (93 m)

Vertical migration/catchability
Unknown spatial process
Structural/spatial refuge

"

"

Calculated for trawl locations & times
NEFSC bottom trawl survey

NGDC 93 m grid®

"

al*, John M son?, Josh Kohut!, Matthew J., Oliver®,
Steven Gray*, John Goif®

Laura Pal

Sediment grain size (u) 2 km Structural/spatial refuge/enrichment US seabed data base”
Pelagic data
In situ CTD measurements
Bottom temperature 1m Metabolic rate NEFSC bottom trawl survey
Bottom salinity® " Alias proximity to freshwater source "
Mixed layer depth " Mixing/1° productivity "
Stratification index? " " "
Simpson's PE (30 m
OOS remote sensing
High—frequency radar
Cross shelf velocity 10 km Advection/movement cost/mixing MARACOOS HF radar®
Along shelf velocity " " "
Variance in velocity " Tidal mixing/episodic forcing "
Divergence potential " Upwelling/downwelling & mixing "
Vorticity potential® " Eddy development/retention "
Satellites
Sea surface temperature 10 km Metabolic rate/other seasonal factors ~ MODIS through MARACOOS®
Chlorophyll a " Primary production/organic matter "
Normalized water leaving radiances
(412, 443, 488, 531, 551, 667 nm)“ " Surface organic matter "
Water mass class " Various "
Frontal index (distance to & strength
of gradient between water masses) " Concentration/enrichment "
Prey abundance
Squid 2km Prey NEFSC bottom trawl survey
Butterfish " " "

*www.ngdc.noaa.gov/mgg/coastal/coastal.html; Phttp://walrus.wr.usgs.gov/usseabed; http://maracoos.org/data;
dyariables that were redundant or not ecologically meaningful and therefore excluded in the final analysis
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Py Finite Time Lyapunov

¢ Exponent is a type of
Lagrangian Coherent
Structure. Based on
currents and can
Indicate areas passive
particles (including
prey species like

Q. zooplankton) may
s aggregate.

Compressing FTLE

strain field
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Palmer Dexp Canyon

9bserved Phytoplankton and FTLE Results, Feb 28 2020 14:00GMT e
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nature > communications earth & environment > articles > article &
4
Article \ Open access \ Published: 20 February 2025
<
Lagrangian coherent structures influence the spatial
structure of marine food webs "
>
7}
Jacquelyn M. Veatch 9, Matthew J. Oliver, Erick Fredj, Hank Statscewich, Kim Bernard, Ashley M. é
Hann, Grant Voirol, Heidi L. Fuchs, William R. Fraser & Josh T. Kohut N
Communications Earth & Environment 6, Article number: 127 (2025) | Cite this article |
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LCS in the Mid-Atlantic Bight
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Winter Average
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Upwelling
?/‘ 67 surfacewinds e

\/ ' UPWELLING
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NOAA-19 Sea Surface Temperature: August 14 2022 0012 GMT
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Persistent SW winds
\
Ekman flow pushes warm
surface water offshore
\
Upwelled cold, nutrient-rich
bottom water along coast
\
Possible phytoplankton
bloom
\

Possible zooplankton
bloom
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OpenDrift - OceanDrift
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Eddies and warm
core rings may be e —
related to some
species
distributions such
as longfin squid.

\

Upwelling

ORIGINAL ARTICLE m W“—EY
Shelf break exchange processes influence the availability of the
northern shortfin squid, lllex illecebrosus, in the Northwest
Atlantic
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= f(physical transport, larval behavior)

Advection, diffusion

Currents can affect
larval dispersal and
settlement success.
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= f(larval transport, survival, spawning and settlement)

Oceanography / Vol. 20, No. 3, SEPTEMBER 2007 / Larval Transport and Dispersal in the Co.

[E] JOURNAL ARTICLE
Larval Transport and Dispersal in the Coastal Ocean and Consequences for Population

Connectivity

JESUS PINEDA, JONATHAN A. HARE, SU SPONAUGLE
Oceanography, Vol. 20, No. 3, SPECIAL ISSUE ON Marine Population Connectivity (SEPTEMBER 2007), pp. 22-39 (18 pages)

https://www.jstor.org/stable/24860094 (H
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. " Fisheries
Fisheries Research Research

Volume 208, December 2018, Pages 7-15

Modeling larval dispersal and connectivity
for Atlantic sea scallop (Placopecten
magellanicus) in the Middle Atlantic Bight

Daphne M. Munroe °® & &, Dale Haidvogel ®, Joseph C. Caracappa ® ®, John M. Klinck ¢,

Eric N. Powell 9, Eileen E. Hofmann €, Burton V. Shank ©, Deborah R. Hart ©
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Volume 173, 5 May 2016, Pages 65-78
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Set-Up and Breakdown
Atlantic surfclam connectivity within the
Middle Atlantic Bight: Mechanisms = e
underlying variation in larval transport and = '°
settlement § =0
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Xinzhong Zhang °, Daphne Munroe ® 2 &, Dale Haidvogel °, Eric N. Powell ©
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successfully

all larvae settled larvae
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Modeling larval connectivity of the Atlantic Longitude Longitude
surfclams within the Middle Atlantic Bight:
Model development, larval dispersal and
metapopulation connectivity

Xinzhong Zhang ° 2 &5, Dale Haidvogel °, Daphne Munroe ¥, Eric N. Powell <, John Klinck 9,

Roger Mann ®, Frederic 5. Castruccio ®
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HFR data several potential applications to fisheries
(and similar) data.

This data is also assimilated into regional models,
which can improve coverage and allow for predictions.

Storms and strong currents can also cause benthic
disturbance and temporary stress. To significantly affect
a population’s distribution, these impacts are likely
minimal compared to trawls, etc, or require prolonged
strong currents due to tides.
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