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Outline
• Synoptic typing and wind ramps
• Modeling ramps and investigating grid impacts
• Daily mesoscale modeling archive
• Observations v. model
• Case studies
• Next steps



What is a Wind Ramp Event?
• Sudden and rapid change in wind 

speed
• Results in rapid change to power 

output
• Tricky to forecast

– Timing error
– Intensity error
– Shape error
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Synoptic Typing

• Technique to objectively quantify overarching synoptic 

weather conditions

• Connect days with similar conditions as specific types

• Data and method from Suriano and Leathers 2017

• PCA using surface conditions (at PHL; temperature, dewpoint, 

cloud cover, SLP, winds), combined with synoptic maps (SLP, 

500 mb height, precip, temperature)

• Used in various climatological studies (hydroclimatology, lake 

effect snowfall, ramp events, ozone pollution, coastal storms)



Modeling of ramp events

• 428 ramp-ups (>50% increase in 

power in 1 hour) observed in 7 year 

time period

• Modeled 12 “monthly analogs” and 

12 “extreme events”

• WRF more likely to predict ramps 

more early, more gradual, and with 

a higher wind speed before the 

ramp, and entirely missed 3
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But the time of the event matters
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• Power deficits were more significant, 
due to causing large changes in net load 
(change in load plus model error)

• Improved model performance in summer 
morning and winter evening would be 
most beneficial, based on case studies

• But what about everyday model 
performance?



Daily Mesoscale Modeling with RU-WRF
• Run Continuously 2011 – Present
• Triple nested: 9km-3km-1km
• Hourly forecast initialized at 00Z: 

– 9km: out 5 days
– 3km: out 2 days
– 1km: out 1 days

• Lateral Boundary Conditions:
– 9km: 0.25 degree Global Forecast System
– 3km: RU-WRF 9km
– 1km: RU-WRF 3km

• Vertical Levels:
– 40 levels more tightly packed near the surface.

• Surface Boundary Condition:
– RUCOOL Coldest Dark Pixel Composite



Study Parameters and Questions

• Utilize same algorithm used to detect ramps in observations to 

detect ramps in daily model output

• How many more/fewer ramps does RU-WRF predict, and with 

what kind of accuracy?

• Are there patterns to the types of ramps that are predicted well 

and/or poorly? (i.e. certain synoptic situations, local effects)

• What about the poorly predicted events makes them 

challenging for the model?

• What might be done to improve it? 



RU-WRF Ramps v. Observations
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2015 Ramps: Observed v. Predicted
Type Number
WRF Predicted, Not Observed 42
Observed, Mispredicted in WRF 80
Both Observed and WRF Predicted 35
Total Observed Ramps 115

• Uses 2 hour, 50% threshold
• Automated algorithm is not perfect: might classify a fairly good 

prediction as a misprediction due to threshold cutoff
• WRF predicts ramps better in winter and spring; more likely to 

predict ramps that don’t occur in summer



Two Example Case Studies
14 February 2015 20 July 2015

• Reasonably well-predicted
• WRF more gradual; didn’t actually meet 

ramp threshold

• Weak ramp in observations
• What did WRF see?



Synoptic Conditions: 14 February 2015
• Great Lakes low 

pressure system
• Strong synoptic 

forcing which was 
well-predicted by 
WRF, and the forcing 
data (GFS)



Synoptic Conditions: 20 July 2015
• New England low 

pressure system, with 
weak, almost 
stationary cold front

• Weaker synoptic 
forcing; local effects 
dominate?



Next Steps
• Explore sea surface temperature’s role
• Look at local meteorological impacts, such as sea breezes
• Investigate cases with a coupled model with more frequent 

data output to evaluate ocean influence and better capture 
ramps

• Expand and update the dataset used
• Quantify possible low-lying fruit improvement areas, and more 

long-term improvement possibilities



jbrodie@marine.rutgers.edu
rucool.marine.rutgers.edu

Thank you!
Questions?


