Dawn of ecosystem sampling using autonomous gliders

Oscar Schofield on behalf of many
The Path Forward: 24:7 365 4-D sampling of the system, make the ocean your lab

Rutgers University’s Coastal Ocean Observation Lab (RU COOL)
How an underwater Glider works...

1. At surface, pump/diaphragm decreases volume, Glider descends

2. At depth pump/diaphragm increases volume, Glider ascends

3. Glider flies a saw tooth pattern, collecting environmental data along it’s path

4. Glider surfaces, acquires GPS, communicates to shore via satellite
Glider’s are “steerable” underwater vehicle with real-time communications that can cover great distances over long periods.

- Long duration
- Grand space scales

Moline et al. 2009
What can science data can be collected by gliders?

WATER COLUMN PHYSICS
- Temperature
- Salinity
- Turbulence

CHEMISTRY
- Optical nutrients
- Optical CO2
- Optical pH
- Mass Spectrometers

ZOOPLOANKTON
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”

IN SITU OPTICS
- Inherent optics
 - Absorption (λ)
 - Scattering (λ)
 - Volume scattering
 - Attenuation (λ)
 - Refractive Index
 - Apparent Optics
 - (λ) Light intensity
 - up & down

PHYTOPLANKTON
- Concentration
 - Spectral Backscatter
 - Hyperspectral Absorption
 - Chlorophyll fluorescence
 - Imagery (visual, holography)
- Diversity
 - Spectral Backscatter (proxy for composition/size)
 - Imagery (visual, holography)
 - “Omics”
- Rates
 - Kinetic fluorescence
 - Photoacoustics
 - Stimulated oxygen kinetics

HIGHER TROPHIC LEVELS
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”
 - Passive acoustics
 - Acoustic tags + Receiver

ORGANIC MATTER FLUX
- Concentration
 - Spectral Backscatter spikes
 - Particle settling rate
 - Imagery (visual, holography)
- Diversity
 - Imagery (visual, holography)
 - “Omics”
 - Mass Spectrometers
- Rates
 - Spatial calibrated fall rates
 - via imagery

Schofield et al. MTS 2015

TRANSPORT
- ADCP
- Estimated geostrophic currents

TRACE GASES
- Optical Oxygen
- Optical CO2
- Mass Spectrometers

ZOOPLANKTON
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”

TEP, DOM
- TEP, DOM

Marine snow & Export Flux
- Marine snow & Export Flux

PHYTOPLANKTON
- Concentration
 - Spectral Backscatter
 - Hyperspectral Absorption
 - Chlorophyll fluorescence
 - Imagery (visual, holography)
- Diversity
 - Spectral Backscatter (proxy for composition/size)
 - Imagery (visual, holography)
 - “Omics”
- Rates
 - Kinetic fluorescence
 - Photoacoustics
 - Stimulated oxygen kinetics

HIGHER TROPHIC LEVELS
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”
 - Passive acoustics
 - Acoustic tags + Receiver

ORGANIC MATTER FLUX
- Concentration
 - Spectral Backscatter spikes
 - Particle settling rate
 - Imagery (visual, holography)
- Diversity
 - Imagery (visual, holography)
 - “Omics”
 - Mass Spectrometers
- Rates
 - Spatial calibrated fall rates
 - via imagery

TRANSPORT
- ADCP
- Estimated geostrophic currents

TRACE GASES
- Optical Oxygen
- Optical CO2
- Mass Spectrometers

ZOOPLANKTON
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”

TEP, DOM
- TEP, DOM

Marine snow & Export Flux
- Marine snow & Export Flux

PHYTOPLANKTON
- Concentration
 - Spectral Backscatter
 - Hyperspectral Absorption
 - Chlorophyll fluorescence
 - Imagery (visual, holography)
- Diversity
 - Spectral Backscatter (proxy for composition/size)
 - Imagery (visual, holography)
 - “Omics”
- Rates
 - Kinetic fluorescence
 - Photoacoustics
 - Stimulated oxygen kinetics

HIGHER TROPHIC LEVELS
- Concentration
 - Acoustic backscatter
 - Imagery (visual, holography)
- Diversity
 - Multi frequency Acoustics
 - Imagery (visual, holography)
 - “Omics”
 - Passive acoustics
 - Acoustic tags + Receiver

ORGANIC MATTER FLUX
- Concentration
 - Spectral Backscatter spikes
 - Particle settling rate
 - Imagery (visual, holography)
- Diversity
 - Imagery (visual, holography)
 - “Omics”
 - Mass Spectrometers
- Rates
 - Spatial calibrated fall rates
 - via imagery
Darwin’s Odyssey
State of New Jersey is now using gliders to map summer water quality. Is low bottom water oxygen due to outflows from the New York city or is a naturally driven by natural dynamics.

State sponsored state wide surveys providing 3-4 missions each summer, and provides close to 10,000 profiles/summer as opposed to ~150 profiles/summer by ship/
Since 2003
Represents 36 years at sea
6 times around the planet
Case Study Hurricanes and Typhoons
Evacuate vs Shelter-In-Place decisions are often made 3-5 days ahead based on the forecast intensity at landfall

Close the gap from both sides: forecasting and response
Tropical Cyclone Heat Potential - Rapid Intensification Proxy

But published research shows ...

Irene & Sandy $87 B
- Glenn et al., 2016 Nature Comms
- Seroka et al., 2016 MWR
- Seroka et al. 2017 JGR Oceans
- Miles et al. 2017 JGR Oceans
- Watkins Ph.D. Thesis

Harvey $128 B
- Potter et al., 2019
Hurricane Irene
August 28, 2011
NOAA/NHC Damage:
>$15 Billion, #15.
Track Accurate;
Intensity Over-predicted.

Avila & Cangialosi, 2012, Tropical Cyclone Report

Hurricane Sandy
October 29, 2012
NOAA/NHC Damage:
>$72 Billion, #4.
Track Accurate;
Impacts Under-predicted.

Essential Ocean Feature - Mid-Atlantic’s Cold Pool
A continental shelf-wide cold bottom layer beneath a warm summer surface layer

The Cold Pool is not monitored from space – we use Gliders, HF Radar, and Models
Essential Ocean Processes in Hurricane Irene:
Ahead of eye center – Vertical Shear > Mixing > Cooling > Weakening

Glenn et al., Nature Comms, 2016
Irene - Impacts of Warm (top row) vs Cold (bottom row) SST

<table>
<thead>
<tr>
<th>Surface Heat Flux</th>
<th>Wind Speed</th>
<th>Storm Surge</th>
<th>Total Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARM SST</td>
<td>SST COLD</td>
<td>Warm Run</td>
<td>Cold Run</td>
</tr>
<tr>
<td>MAXIMUM WATER LEVEL:</td>
<td>1.9 m</td>
<td>1.4 m</td>
<td></td>
</tr>
<tr>
<td>Sign Change</td>
<td>10 knot reduction</td>
<td>0.5 m reduction</td>
<td>35 mm reduction</td>
</tr>
<tr>
<td>as observed</td>
<td>to observed</td>
<td>to observed</td>
<td>to observed</td>
</tr>
</tbody>
</table>
One year later…
Superstorm Sandy

October 2012

GOFS 3.0 = Navy’s operational Global Ocean Forecast System
RTOFS = NOAA’s operational global Real Time Ocean Forecast System
2018 Community Gliders deployed in 3 Picket Lines

>30 Hurricane Sentinel Gliders from the Navy, NOAA, NSF, Academic & Industry Partners reporting ocean conditions through the U.S. IOOS Glider Data Assembly Center (DAC) ahead of Hurricanes Florence, Isaac and Helene on September 11, 2018.
2018 Hurricane Season – 62 Gliders in IOOS Glider DAC

25% Hurricane Gliders
75% Shared Community Gliders
123,335 Total Glider Profiles
Hurricane Sentinel Gliders deployed in 3 Picket Lines

>30 Hurricane Sentinel Gliders from the Navy, NOAA, NSF, Academic & Industry Partners reporting ocean conditions through the U.S. IOOS Glider Data Assembly Center (DAC) ahead of Hurricanes Florence, Isaac and Helene on September 11, 2018.
Data Availability
Leveraging Global Tropical Cyclone Expertise

Drawn from an expanding Global Network

58 Institutions
Moving
1) Maximize collaboration and partnerships
2) Capacity Building