

OF NEW JERSEY

ciences

Fishing with robots: Understanding the Ross Sea food web through integration of acoustic and AUV technology

Corie L. Charpentier, Rachael Young, Anthony Cossio, Christian Reiss, Jan Buermans, &

Grace K. Saba

The Ross Sea

~26% of Southern Ocean primary production (Arrigo et al. [2008] J. Geophys. Res.)

The Ross Sea

~26% of Southern Ocean primary production (Arrigo et al. [2008] J. Geophys. Res.)

Supports a pristine polar ecosystem

Marine Protected Area (Dec. 2017)

Modified from CCAMLR

The Ross Sea Climate

Sea ice trend will likely reverse within 50 years in the Ross Sea (Smith et al. [2014] Geophys. Res. Lett.)

Warming altered food web dynamics in the Western Antarctic Peninsula.

How will future climate affect the Ross Sea ecology?

(Stammerjohn et al. [2012] Geophys. Res. Lett.)

The Ross Sea food web

What regulates the abundance and dynamics of the middle trophic levels?

Ship-based methods

Net tows

Hull-mounted acoustics

Standard ship-based methods are costly and provide low spatial and temporal resolution.

An AUV approach: Increasing resolution

Glider technology offers a **cost-effective**, **high-resolution** alternative.

An AUV approach

Slocum Webb G2 Glider

 CTD, WET Labs BB2FL ECO puck (chlorophyll fluorescence, optical backscatter), Aanderaa Optode (dissolved oxygen)

Acoustic Zooplankton Fish Profiler (AZFP)

• 38, 125, and 200 kHz

Testing our AUV approach

1. Calibrate glider acoustics and deploy glider in the Ross Sea

2. Ground truth glider acoustics with ship-based methods

3. Using integrated glider platform, develop methodology to assess food web dynamics in the Ross Sea

Acoustics calibration

Frequency (kHz)	Sphere type (size)	Depth of sphere (m)	Offset (dB)
38	Tungsten carbide (33.2 mm)	4.5	-1.08
125	Tungsten carbide (33.2 mm)	8.5	+1.27
200	Tungsten carbide (38.1 mm)	4.5	+1.40

**Sensor at a salinity of 33.08, temperature of 20.3 C, pressure of 0.21 atm

Glider deployment in the Ross Sea

Net tows (3 locations): Isaacs-Kidd Midwater Trawl

1-m² Plankton Net

Ground truthing (Location 1)

Ground truthing (Location 2)

Ground truthing (Location 3)

Testing our AUV approach

1. Calibrate glider acoustics and deploy glider in the Ross Sea

 \checkmark

2. Ground truth glider acoustics with ship-based methods

3. Using integrated glider platform, develop methodology to assess food web dynamics in the Ross Sea

Just the tip of the *iceberg*: What's next?

1. Determine the physical drivers of zooplankton and silverfish size and distribution

2. Investigate the relationships between phytoplankton, zooplankton, and fish distributions

Photo credit: Jack DiTullio

ASL Environmental

David Aragon, Nicole Waite, Chip Haldeman, Schuyler Nardelli, Camille Adkison

David Lemon, Matt Stone, Rene Chave

Antarctic companions: Crew of the R/V Nathaniel B Palmer, Jack Ditullio, Mak Saito, Rob Dunbar, Jamee Johnson, Linnah Neidel, Matt Louis, Shannon Zellerhoff, Nikki Chatelain, Bryan Chambers

Thank you!

Developing a profiling glider pH sensor for high resolution coastal ocean acidification monitoring

NSF OTIC Program (OCE #1634520)

Developing a profiling glider pH sensor for high resolution coastal ocean acidification monitoring

NSF OTIC Program (OCE #1634520)

Developing a profiling glider pH sensor for high resolution coastal ocean acidification monitoring

NSF OTIC Program (OCE #1634520)