# SeaSonde Ocean Surface Monitoring

Chad Whelan Chief Technology Officer CODAR Ocean Sensors





## **Wave Measurements**







## Ocean/Met Agencies Using SeaSonde

Southern Ocean



Regional/National Networks Case Study: U.S. West Coast

- 60+ SeaSondes
- Mixed frequencies: 5, 13, 25, 42
- Nested Resolutions
- >2000 km of coastline covered







www.codar.com

SeaSonde Site Layout Climate-Controlled Shelter with Power, Communications

> I I MHz: Single T/R antenna

< I I MHz: Separate T & R antennas





SeaSonde Site Layout Climate-Controlled Shelter with Power, Communications

> I I MHz: Single T/R antenna

< 11 MHz: Separate T & R antennas





SeaSonde Site Layout Climate-Controlled Shelter with Power, Communications

Transmit Antenna Configurations For Extra Range





## Lightweight, Easy to Install



## Small Footprint for Easier Siting





## On Buildings



In urban areas & on sensitive land B.n Bi





## Phang Nga, Thailand 5 MHz Separated T & R











## Rapid Deployment

3



S Marines

CODAR Ocean Sensors <u>www.codar.com</u> TAL MIL



## Rapid Deployment







## Rapid Deployment

HELITR















## Considerations for Choosing Frequency

| Frequency<br>(MHz) | Antennas | Radar<br>λ<br>(m) | Ocean $\lambda$ (m) | Current<br>Depth<br>(m) | Max<br>Speed<br>(m/s) | Range<br>(km) | Resolution<br>(km) | Max Wave<br>(m) |
|--------------------|----------|-------------------|---------------------|-------------------------|-----------------------|---------------|--------------------|-----------------|
| 4.5                | 2        | 67.3              | 33.6                | 2.0                     | 6.5                   | 160-220       | 3-6                | 25              |
| 5.3                | 2        | 57.0              | 28.5                | 2.0                     | 6.0                   | 150-200       | 6                  | 24              |
| 9.3                | 2        | 32.2              | 16.1                | 1.6                     | 4.5                   | 90-130        | 3-6                | 19              |
| 13.5               | I        | 22.2              | 11.1                | 1.3                     | 3.7                   | 60-90         | 3                  | 13              |
| 16.2               | I        | 18.6              | 9.3                 | 1.0                     | 3.4                   | 45-65         | 1.5                | 11              |
| 24.5               | I        | 12.2              | 6. I                | 0.7                     | 2.8                   | 30-50         | L                  | 7               |
| 26.2               | I        | 11.4              | 5.7                 | 0.6                     | 2.7                   | 25-45         | I                  | 6               |
| 39.3               | I        | 7.6               | 3.8                 | 0.3                     | 2.2                   | 15-25         | 0.3                | 3               |
| 42.3               | Ι        | 7.1               | 3.6                 | 0.3                     | 2.1                   | 15-25         | 0.3                | 3               |



CODAR Ocean Sensors

www.codar.com

### ITU Ocean Radar Frequency Allocations

CODAR-patented highprecision GPS-disciplined waveform (SHARE)

#### Share Bandwidth

Multiple Systems can sweep through same band without interfering

<u>Multistatic Network</u> Collect Sea echo from another's site's transmission



### Spill Preparedness & Response



CODAR Ocean Sensors www.codar.com

cm/s



## Search And Rescue: U.S. Coast Guards SAROPS Search Area Greatly Reduced After 96 Hours



### HYCOM 36,000 km<sup>2</sup>

HF Radar 12,000 km<sup>2</sup> Slide Provided by Dr. Josh Kohut, Rutgers University



### **Fisheries Management**





#### Per Species Habitat Models





Slide Provided by Dr. Josh Kohut, Rutgers University



#### Storm Intensity Prediction – Currents during Irene









#### Waves vs Buoys – U.S. West Coast



### **New Jersey Shore Waves Buoys**



- Buoys obtain point measurement whereas SeaSondes obtain measurements from range cells (RCs).
- This map shows 10 RCs for each station. The first two RCs are not used to monitor waves.
- Because RCs extend across a wide patch of ocean surface, their measurements may reflect conditions that vary. These include water depth, current speed, surface roughness, and wind direction.
- Buoy 44065 resides between SEAB's RC7 and RC8. Buoy 44091 resides in SPRK's RC10. 44091 does not monitor winds.
- Wave data from BRNT are plotted with 44091 buoy output.

#### HFR wave data can be also be viewed for each range cell.

#### SPRK range cells RC3, RC5, and RC10 are highlighted.







- Because the New Jersey coast is aligned at approximately 30°, offshore winds have directions between 210° and 30°.
- Onshore winds have directions between 30° and 210°. Offshore winds have directions between 210° and 30°.
- Onshore winds produce wind waves and swell. By the time swell reaches the shore, it is relatively uniform in wave length and height. Both swell and wind waves can be detected by SeaSondes and buoys.
- Offshore winds produce wind waves that are barely developed nearest the coast. As the wave develops further from shore, wave height increases. Wind waves in various stages of development are observed in SeaSonde wave height data.

### January 2018 Waves at Seaside Park (SPRK)





## **Onshore** Waves approximately equal to buoy wave heights

## Offshore Waves lower than buoy wave heights due to Fetchlimited wave growth





#### Significant Wave Height (m) Versus Time January 4-6, 2018







#### Wave Results Match Northward Progression in Daily Weather Maps



## 3/14 7:00 AM EST 3/15 7:00 AM EST



# SeaSonde Ocean Surface Monitoring

- Designed with national/regional networks in mind
- Compact, low footprint hardware
- Low power consumption
- Frequency sharing across large network



# SeaSonde Ocean Surface Monitoring

- Omnidirectional measurements
- Built for resiliency
- Advanced QA/QC algorithms
- Unrivaled manufacturer support
- Leverage many applications and stakeholders for one HF network

