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•  Tropical cyclone (TC) intensity forecast improvements currently lag 
the progress achieved for tracks 

•  TC research has focused on deep ocean, less to coastal processes 
despite critical importance to shoreline populations 

•  High Frequency (HF) radar (Fig. 1-2) and underwater gliders (Fig. 2) 
observed wind-forced 2-layer circulation of stratified coastal ocean 
and resultant shear-induced mixing across Mid Atlantic continental shelf 

 

3. Cooling has large impact on storm intensity and 
should be included in TC forecast models. 

Irene 

2. Resultant ahead-of-eye-center cooling was 
present in Irene, Barry, 9 other U.S. Mid Atlantic 
storms, and Typhoon Muifa in the Yellow Sea. 

Table 1. AOEC cooling (°C), in-storm cooling (°C), and % AOEC cooling observed at nearshore 
MAB buoys for 11 tropical cyclones that traversed the MAB continental shelf during summer 
stratified conditions (June-Aug) since 19851. 
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1. Baroclinic coastal ocean mixing processes have 
been identified in Irene and Barry. 

Fig 2. Gliders RU16 (Irene1, left) and RU17 
(Barry, right) observed highly stratified summer 
conditions (top) & low depth-averaged currents 
(green) throughout storms. CODAR HF radar 
observed strong onshore surface currents 
ahead-of-eye-center (red). Bottom layer 
currents, calculated from depth-weighted 
average of the HF radar and glider velocities, 
were offshore (Irene) and offshore & down-
shelf (Barry) ahead-of-eye-center (blue). 
Irene’s dominant depth-averaged momentum 
balance (not shown) was wind stress opposing 
pressure gradient (TBD for Barry). 
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Fig 1. Strong onshore surface ocean currents due to easterly winds ahead of both Irene 
(left) and Barry (right) were observed by HF radar. 
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Opposing surface and bottom currents enhanced 
shear-induced mixing across the thermocline 
(black) and cooled the surface waters ahead-of-
eye-center in both storms. Mixing terms 
dominated advective terms in Irene’s heat 
balance analysis (not shown, TBD for Barry).  

•  The coastal baroclinic processes identified here (Fig. 1-2) occur ahead-of-
eye-center (AOEC) due to onshore winds in front half of storms that 
move northward along an eastern coast. 

•  Buoys show same AOEC cooling signal as gliders (Table 1): on average, 
~73% of in-storm cooling occurred AOEC. 

Irene Barry 

•  Satellite maps show unique cooling patterns for each storm (Fig 3). 
Irene: large area of >5°C, up to 11°C. Barry: warming south, cooling north.  

Fig 3. Satellite maps of cooling for Irene1 and Barry, obtained by differencing pre- and post-storm SST 
composites. Note uniform cooling for Irene and more complex cooling/warming patterns for Barry. 
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!
Storm!Name!

!
Buoy!

Water!
Depth!
(m)!

Ahead5of5
Eye5Center!
Cooling!
(°C)!

In5storm!
Cooling!
(°C)!

%!Ahead5of5
Eye5Center!

Arthur!(2014)! 44014! 48! 1.4! 2.4! 58%$
Irene!(2011)! 44009! 26! 4.5! 5.5! 82%$
Barry!(2007)! ALSN6! 29! 5.1! 5.1! 100%$

Hermine!(2004)! 44009! 31! 0.9! 1.1! 82%$
Allison!(2001)! CHLV2! 14! 2.3! 2.6! 88%$
Bonnie!(1998)! CHLV2! 14! 4.2! 4.2! 100%$
Danny!(1997)! 44009! 31! 2.1! 3.6! 58%$
Arthur!(1996)! 44009! 31! 2.3! 3.5! 66%$
Emily!(1993)! 44014! 48! 2.3! 2.8! 82%$
Bob!(1991)! 44025! 41! 2.1! 4.6! 46%$

Charley!(1986)! 44009! 31! 2.7! 5.4! 50%$
Average! ! 31! 2.7! 3.7! 73%$

Std.!Deviation! ! 11! 1.3! 1.4! 19%$
Irene!(2011)! RU16!WRF!1D!!

Air;Sea!Flux!
37;46! 0.0011! 0.014! 8%$

! RU16!WRF!1D! 37;46! 1.0! 3.3! 32%$
! RU16!WRF!3D!PWP! 37;46! 5.2! 9.2! 56%$
! RU16!Observed! 37;46! 5.1! 6.7! 76%$

Irene!(2011)! 44065! 25! 3.8! 4.2! 90%$
Irene!(2011)! 44100! 26! 6.3! 6.4! 98%$

! ! ! ! ! $
Muifa!(2011)! 37.045!N!122.66!E! 31! 4.1! 4.8! 85%$

Irene WRF 
sensitivities show 
small % AOEC 
cooling for air-sea 
fluxes, 1D mixing, 
and 3D deep 
ocean processes 
as compared to 
observed 76% 

Fig 4. Irene WRF cumulative sensitivity results in both min sea level pressure (SLP) & max 10m wind.2 

•  >140 Irene WRF simulations (Fig. 4) show largest sensitivity to AOEC 
cooling (fixed pre-storm vs. fixed post-storm SST, as in Fig. 3).      

Fig 5. Irene WRF landfall SLP maps for 
pre-storm and post-storm SST 
simulations, and SLP time-series 
comparison to NHC Best Track.1 
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Fig 6. Same as Fig. 5 but for Barry at time 
of eye passage by RU17. Note that for 
Barry, more simplified SSTs than Fig. 3 
were used for WRF simulations. 
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