Mixing and Phytoplankton Dynamics in Antarctica's Coastal Seas

Filipa Carvalho, Josh Kohut, Oscar Schofield, Matt Oliver, Maxim Gorbunov

1. Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
2. College of Earth, Ocean, & Environment, University of Delaware, Lewes, DE, USA
email: filipa@marine.rutgers.edu

Background

Palmer Deep is considered a biological "hotspot" by providing predictable food resources and driving penguin foraging locations. Physiology/composition of the phytoplankton blooms and the physical mechanisms driving them aren’t well understood.

Science Questions

- Ecologically relevant mixed layer depth (MLD) definition?
- MLD regulates phytoplankton blooms?
- Seasonal/spatial biophysical patterns at Palmer Deep Canyon?
- Physiological responses to physical forcing?

Glider Dataset

Glider data stats:

<table>
<thead>
<tr>
<th>Glider</th>
<th>WP</th>
<th>Amundsen Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD (m)</td>
<td>7</td>
<td>1.6</td>
</tr>
<tr>
<td>Phytoplankton</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Bloom</td>
<td>2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Physiological Responses Depending on MLD and Water Column Stability

- Depth-dependent photoacclimation in nutrient replete environment:
- MLD regulates phytoplankton blooms.
- Seasonal/spatial biophysical patterns at Palmer Deep Canyon.
- Physiological responses to physical forcing.

Max(N²) is Ecologically Relevant MLD Definition Across Antarctica

Maximum of Buoyancy Frequency (N²) was the most ecologically relevant MLD definition:

\[
\text{max}(N^2) = \frac{\text{max}(k_a)}{\sum k_a}
\]

- Quality index (Lorbacher et al., 2006) used to evaluate/filter MLD determined with certainty:
 \[
 QI = 1 - \frac{\text{rmsd}(k_a - \text{MLD})}{\text{rand}(k_a - \text{MLD})}
 \]
- Chlorophyll depth adapted from the maximum angle principle (Chu & Fan, 2011).
- All regions: close 1:1 relationship between MLD and depth of lower boundary of chlorophyll.

Conclusions

- Maximum in Buoyancy Frequency (N²) is an ecologically relevant MLD definition.
- Shallower MLD (lower salinity and increased stability) results in increased water column chlorophyll - increased light availability.
- Photoacclimation (evaluated by E₁) is dependent on MLD and water column stability.

Future Work

- Investigate further the relationship between MLD, water column stability and mixing.
- Understand the temporal and spatial variability of the photophysiological responses to seasonal changes in physical forcing.

Acknowledgements

We would like to thank the FCT grant DEBI - SAFBRD/02725/2010 and Teledyne Webb Research for graduate study financial support. This study was supported by the NSF PAL-LTER and NSF CONVERGE projects. A big thanks to all who helped me with data treatment and to all who contributed to the collection of all the data. Special thanks to the Rutgers, NSF LTER and CONVERGE field teams for all field support.