

IMPACT OF CANYON DYNAMICS ON THE SPRING PHYTOPLANKTON BLOOM

(PALMER DEEP CANYON, WEST ANTARCTIC PENINSULA)

Filipa Carvalho, Oscar Schofield, Nicole Couto, Josh Kohut

Graduate Student Talks, October 21st, 2014

MEAN WINTER TEMPERATURE IS INCREASING IN THE WEST ANTARCTIC PENINSULA (WAP)

NASA/Goddard Space Flight Center Scientific Visualization Studio. Data provided by Larry Stock

Data Source: Palmer Station Weather

ICE SEASON DURATION IS DECREASING IN THE WEST ANTARCTIC PENINSULA (WAP)

NASA/Goddard Space Flight Center Scientific Visualization Studio. Data provided by Larry Stock

Data Source: Palmer Station Weather

UCDW Intrusion onto the Shelf Warming of Shelf Water

87% of glaciers are in retreat

Increase in the ocean heat content

UCDW: Upper Circumpolar Deep Water

ACC based on climatological dynamic topography of *Orsi et al.*, DSR, 1995

ACC: Antarctic Circumpolar Current

WAP: West Antarctic Peninsula

WAP CANYONS: "BIOLOGICAL HOTSPOTS"

Eveleth et al., In Prep.

WAP CANYONS: "BIOLOGICAL HOTSPOTS"

- Penguin Colonies at costal termini of cross-shelf canyons/troughs
- Predictable /elevated food availability;
- Phytoplankton growth in canyon heads;

WAP CANYONS: "BIOLOGICAL HOTSPOTS"

Eveleth et al., In Prep.

BLOOM INITIATION HYPOTHESES:

 H1: The main control of the bloom initiation is the upwelling of <u>nutrients</u> from the Upper Circumpolar Deep Water (UCDW);

 H2: The main control of the bloom initiation is the shoaling of the mixed layer depth, increasing, this way, the <u>light</u> availability to the phytoplankton community.

TESTING THE CANYON HYPOTHESIS

- Physical forcing of the bloom
 - Mix Layer Depth
 - Water stability and stratification
 - Canyon Circulation
- Physiological Responses (FIRe glider)
 - Mainly photosynthetic efficiency

PHYSICAL FORCING OF THE BLOOM — WHAT TO LOOK AT?

- 18 Slocum Glider Deployments
 - Over 16 000 water column profiles
- Sensors:
 - CTD (Temperature,Salinity, Depth)
 - Fluorescence
 - FIRe & PAR
 - Backscatter
 - Oxygen

GLIDER ANALYSIS — RU05-276 (WARM WATER SHOALING)

GLIDER ANALYSIS — RU05-276 (WARM WATER SHOALING) emperature (°C) Depth (m) -20 -40 0.5 -60 -80 -100 02/17 02/23 02/25 02/29 02/19 02/21 02/27 Time $\times 10^{-4}$ Depth (m) -20 -40 Fluorescence -60 -80 -100 02/17 02/19 02/21 02/23 02/25 02/27 02/29 Time

GLIDER ANALYSIS — RU05-276 (WARM WATER SHOALING)

IMPORTANT VARIABLES

- Tmin Temperature minima in each profile
- Depth Tmin Depth of Tmin
- ΔSigma-Theta_{Tmin-0}

$$\Delta Sigma - Theta_{Tmin-0} = \frac{SigmaTheta_{Tmin} - SigmaTheta_{surface}}{Depth_{Tmin} - Depth_{surface}}$$

Saba et al, 2014

High \triangle Sigma-Theta_{Tmin-0}:

- Winter Water (Tmin) is shallow
- Increased Stratification (density differences are big)

Using Gliders to Map the Phytoplankton Dynamics

Pros:

- High Resolution profiles of the water column
- Long deployments high number of profiles

Cons:

 Spatial and temporal resolution: no time series, no spatial map at one timepoint ...

ANNUAL & SEASONAL VARIABILITY IN TMIN TMIN INCREASES THROUGHOUT SEASON

Season 2011-2012

Season 2013-2014

2013-2014 Season: no change in Tmin – Possibly due to late ice retreat?

ANNUAL & SEASONAL VARIABILITY IN TMIN TMIN INCREASES THROUGHOUT SEASON

2013-2014 Season: no change in Tmin – Possibly due to late ice retreat?

ANNUAL & SEASONAL VARIABILITY IN TMIN TMIN COLDER ON THE SLOPE —Shallow

Tmin peaks colder on Slope < Deep < Shallow regions

Slope Deep

2013-2014 Season:

- colder in all regions
- Winter water (T<-1°C)
 present on the slope

ANNUAL & SEASONAL VARIABILITY IN DEPTH TMIN DEPTH TMIN DEPTH TMIN DECREASES THROUGHOUT SEASON

Season 2013-2014

2013-2014 Season: smaller decrease in depth in Tmin – Possibly due to late ice retreat?

ANNUAL & SEASONAL VARIABILITY IN TMIN TMIN SHALLOWER ON THE SLOPE — Shallow

Depth Tmin peaks deeper on Deep< Shallow < Slope regions

Slope Deep

2013-2014 Season:

- Peaks ~ -50m (all regions)
- Winter water (T<-1°C)
 deeper on the slope

Moving Forward with the Physical Data Analysis

- MLD (different definitions)
 - Buoyancy Frequency (N²), Δ Sigma-theta_{Tmin-0}
- Compare to the inter-annual variability (related to sea ice and wind)
- Annual/seasonal anomalies.
- Physical-Biological connections:
 - Maps of chlorophyll distribution
 - Changes within the timescale of a bloom (pre-bloom, bloom and post-bloom conditions).

FIRE GLIDER

18 GLIDER DEPLOYMENTS DURING LTER

FIRE GLIDER DATA CORRECTION - FM

Before correction

10 2500 20 30 2000 ≒ (E) 40 Depth 9 9 <u>ब</u> ए 00टा 1000 e 70 80 90 12/09 12/11 12/13 12/15 12/17 Time (month/day/2012)

After correction

- Fm proxy for phytoplankton biomass (relative units)
- Need in situ water collection and chl measurements through fluorometric method

Daytime affects Photosynthetic Efficiency (non-Photochemical Quenching)

FIRE IN AN UPWELLING EVENT: LIGHT IS THE MAIN DRIVER OF THE BLOOM

Photosynthetic Efficiency (Fv/Fm) fairly constant & high

FIRE IN AN UPWELLING EVENT: LIGHT IS THE MAIN DRIVER OF THE BLOOM

FIRE IN AN UPWELLING EVENT: LIGHT IS THE MAIN DRIVER OF THE BLOOM

Fm decreases – Due to mixing? Deepening of the MLD?

Moving Forward with the FIRE Glider Analysis

Look at:

- Absorption cross-section (σ_{PSII})
- Differences between regions/bathymetry
- Correlations with mixed-layer depth (MLD)

CONCLUSIONS

- Annual presence study overall trends and unique events
- Light (shoaling of the mixed layer) as the main driver of the bloom;
- Full sunlight promotes an inhibition process on the cells;
- Nutrients still important when surface waters are nutrient limited.

Fundação para a Ciência e a Tecnolog