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In Situ Research- ‘The Early Years’ 





Color variability at multiple scales  
around Tasmania from CZCS image 

Causes? Strong winds, strong  
currents, bottom togography, etc. 

GSFC, NASA 

Thanks Mossian (NASA)  and Wilkins (Rutgers) 



Technology will make life good 



My Lab 



A Coastal Observatory : 1993 
Continuous  
Sampling on the 
New Jersey Shelf 
Began in 1993 



A field station & an 
environmental impact  

report 



LEO 15 Fiber Optic Cable 
11 tons, 10 km 





Sediment Transport Studies at LEO Site –early 1990’s 

Benthic Acoustic Stress Sensor (BASS) Tripod  
Before and After Summer Deployment at LEO 



BASS Tripod 
For LEO-15 

Late 1990’s 



Lesson: The importance of having a  
continuous picture to the sea 
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Tidal cycle Upwelling 

 Optical profiler deployed on LEO-15 guest port 



US 
MODIS 

India 
Oceansat 

China 
FY1-D 

Satellite Data Acquisition Systems 
1992 2003 
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Hudson Plume – April, 2005 
Summer Storm – July, 2005  

New Enabling Technologies – CODAR HF Radar 

Each Radar Measures 
Radial Component 
of the Surface Current  



  British 25-MHz "Chain Home" built 1938 to detect German bombers 
  "Bragg" sea echo from English Channel mistakenly labeled "jammer" 

  These systems preceded microwave radars by several years 

380-foot tall metal transmit towers 

240-foot tall wooden receive towers 



•  Microwave vs. HF -- what's the difference?: (about three orders of magnitude!) 
•  Example:  500-m half-rhombic array built by DoC (Barrick) in 1972 -- SCI, CA 

★ The Beginnings ★  
Large Phased Arrays on San Clemente Island, CA 

Beyond the horizon 

Scatter from water waves is 
simple 

2 billion microwave radars 
exist 

Only 350 HF radars exist in 
the world, 300 done by 
CODAR 

HF radars not good for much 
except sea scatter & 
ships 

But Why HF? 



monopole (A3) 

radial whips 

loop box 
(A1 & A2) 

Computer and Monitor Transmitter 
Receiver 

What does an HF RADAR consist of? 

loop 1 (A1) 
loop 2 (A2) 

receive antenna 

loop box 

Transmit Antenna 

Receive Antenna 

electronics 



RF Modes of Propagation 



Ground Wave Propagation & Depth of Measurement 
•  Requires interface between free space (air) and highly conductive 

medium (>8 ppt salinity sea water) 
•  Ocean surface exists as a free boundary allowing surface 

molecules freedom to conduct EM energy, much like a waveguide 
•  Allows vertically polarized EM energy to propagate w/ reduced 

energy loss for greater distances and beyond horizon 
•  Radar wave does not penetrate surface at all - depth of 

measurement comes from effective depth-averaged current “felt” 
by ocean wave 

•  25 MHz measures to < .5 m, 5 MHz measures to 2 m deep 

D ∝ λ


Depth of measurement is related to ocean wavelength 
(Can be linear or logarithmic) Seawater is conductive 

Air is almost like free space 
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Two (or more) Sites Used to Produce  
Total Current Vector Maps from  

Single-Site Radials Where Coverages Overlap 

Angle of incidence 
Greater than 15° 
or less than 165° 



LONG 
RANGE 

NETWORK 



C:\Documents and Settings\hroarty\My Documents\COOL\01 CODAR\MARCOOS\Renewal 



Nested 
Standard 

Range 
Network 



CEDAR ISLAND 2005 

2009 



BLOCK ISLAND 

2007 2009 



Radial Coverage Total Coverage 



Radial Coverage Total Coverage 





Every Other 
Vector Shown 

for Plotting 
Purposes 

DEC 2008  
to         NOV 

2009 

Temporal 
Coverage 

Greater than 
50% Required 

for Plotting 



Winter Spring DEC ’08 – FEB 
‘09 

MARCH ’09 – 
MAY ‘09 



Summer Fall JUNE ’09 – AUG 
‘09 

SEPT ’09 – NOV 
‘09 



Every Third Ellipse 
Shown for Plotting 

Purposes 

Temporal Coverage 
Greater than 50% 

Required for Plotting 



24 Hours Into Search 

HYCOM 

Low Confidence 

HF Radar 

High Confidence 



48 Hours Into Search 

HYCOM  

Low Confidence 

HF Radar 

High Confidence 



Search Area After 96 Hours 

HYCOM  

36,000 km2 

10,500 nmi2 

HF Radar 

12,000 km2  

3,500 nmi2 

232 km 

154 km 

123 km 

100 km 



Autosub�
Southampton Oceanography Centre, 
UK


Martin-600�
Maridan, Denmark


Hugin�
Kongsberg Simrad, Norway


Odyssey�
Bluefin Robotics, USA


Explorer family�
ISE Research, Canada


What do the subsurface remote sensing platforms look like? 

Thanks to Gwynn Griffiths 



Slocum glider Rutgers 
University, USA


Spray glider, Scripps Inst.�
Oceanography USA


The Mauve AUV�
France


Remus - a 1.8 m long AUV�
Hydroid Inc., USA


Gavia - a one person AUV�
Hafmynd, Iceland


C-Scout, IMD, Canada


Sea glider U. Washington 
& APL, USA


What will the subsurface remote sensing platforms look like? 
AUVs do not need to be large … 

Thanks to Gwynn Griffiths 



Range of space and time regions can be covered effectively.    

Moline & Schofield 2009 J. Atm Oce Tech 





1E10  bioluminscent photons/s 
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Ship Sampling for Bioluminescent Photons 

3E10  bioluminscent photons/s 

Oceans are complex and hard to sample: Small scale variability 
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Robot Sampling for  
Bioluminescent Photons 

Thanks to Moline 



Scaling issues 
between: 
•  Discharge jet 
•  Offshore advection 
•  Surfzone mixing – 
wave driven transport 

• DELFT 3D being 
used to test interplay 
between momentum of 
discharge jet, width of 
breaking and strength 
of wave driven currents 
in surf and width of 
surfzone, and offshore 
transport 
• Model runs showing 
that currents can squirt 

2) Coastal Processes Study 



Example of mapping a freshwater plume out of the Tijuana River.  
Plume moving north. Salinity on left, optical scatter (turbidity) on right.  
Mapped with REMUS 100 – HF RADAR Surface currents used for 
mission planning. 
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Slocum Coastal Glider 

Glider Specs. 
Length: 1.5 m Hull Diameter: 21.3 cm 
Weight: 52 kg 

Science Bay Specs. 
Length: 30 cm Diameter: 21.3 cm 
Max. Payload Weight: 4 kg 





29-Jun-2004 13:26:55 - 04-Jul-2004 02:19:47 
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NJSOS Endurance Line: Seasonal Cross-Shelf Optical Backscatter Transects 
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Science Findings 
A) Storms lead to massive resuspension in the winter 

and early spring.  After summer stratification 
storm induced mixing rarely mixes particles through 
the strong MAB pycnoclines, but lift material to the 

pynocline base. 
B) Particles accumulate in the cold pool and then are 

then advected back to shore in the summer. 
C) Particle distributions are best described by 

haloclines on the MAB 
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Oregon State University Collaboration 
ChiPod attached to glider for 1 and 18 day missions 

External Modular Sensors 



SHAREM 150 (Glenn et al) 

Sargasso Sea Front Sargasso Sea Front Sargasso Sea Front 

Cold Core Eddy Cold Core Eddy 

Cold Core Eddy 
Warm Core Remnant Warm Core Remnant 

Warm Core Remnant 

The ability to map space persistently at sea is key: Here 4 gliders changed Naval 
tactics during a submarine war game 64 times in 1 month.   

RU Mission # 
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RIVERS 
NSF’s LaTTE – Under transports  

and transformations of  
Hudson River Plume 

CDOM 

Backscatter salinity 



Light: ONR’s OASIS experiments at Martha’s Vineyard (spectral downwelling  
irradiance, and the apparent optical properties) 

Ed491 (nm) 

Kd491 (nm) 



Phytoplankton: ONR’s HyCODE & OASIS and NSF’s EcoHAB programs (bulk  
phytoplankton and phytoplankton composition) 

Phytoplankton communities Phytoplankton biomass 

Phtyoplankton 
response 

To passage of 
Nor’Easter 

storm 



Sediment: ONR’s OASIS and MIREM programs focused on refining 
understanding of nepheloid layers and importance of storms 
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Detritus: With the availability of hyperspectral absorption invert the detrital 
optical load using techniques developed for ac-9 (ONR HyCODE) 
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ONR MIREM experiments: The combination of optical parameters can be used to define 
 optically-based mission planning models 

Towed MCM detection system 

MIREM April 2005 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your 
computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Clear water Real water 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your 
computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Clear water Real water 

probability of detection  
at an altitude of 10m  

off bottom 

Red = poor detection  

The Problem: What can you see? 
Helicopter or diver…. 
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NOAA OE & NJ DEP: The production of CDOM & detritus tightly coupled to phytoplankton  
growth; therefore there is need to measure growth and metabolism.  

Oxygen Phytoplankton health 

SOFEX 
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•  June ’06 URI visits Rutgers with 
hydrophone 

•  August ’06 Hydrophone attached to 
glider for 15 minute segment 

•  Sept. ’06 Hydrophone attached to 
glider for 14 day mission 

•  April ’07 URI visits Rutgers for two 
days of experiments to test beam 
forming capability 

Proposed location but 
vibrations from glider 
contaminated acoustic 
signals  

Final configuration with hydrophone 
towed behind glider with no rigid 

connection between the two 

Future focus areas will be on recording marine 
sounds with specific focus on higher trophic 

levels. 



160 Acoustic pings 
from transmitter over 
2 hour period 

NOAA National Marine Fisheries Service (NMFS) Collaboration 
Vemco “Fish Finder” Attached to glider for 1 and 12 day missions 

External Modular Sensors 



1) The sensor 2) Expanded glider payload capacity 

320 Alkaline C-cells versus 230 



Month Long Experimental Effort 
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 2001 Real-time Ensemble Forecasts 



3-D visualization 

Hindcast Models 
EcoSim 

Bio-Optical Model 

Forecast Briefing 
Air-Sea Interaction 

Model 
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Bottom Boundary 
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 Model 

Experimental  
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Atmospheric  
Model 

Atmosphere/Ocean Physical/Biological Forecast Models 





How well can we sample a 20 by 20 kilometer  
box in the ocean? 



Warsh – NOAA 
1989 
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Hypoxia/Anoxia & Bottom Bathymetry 
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30 X 30 km LEO CPSE 
An Integrated Observatory 
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Forecast 
Real-Time Ensemble Validation 

- In an observationally rich  
environment, ensemble forecasts  

can be compared to real-time data 
to assess which model is closer to reality 

 and try to understand why. 
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Shipboard surveys 
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Fluorometer 

South, offshore flow 

Adaptive Sampling of  Resolved Scales- Shipboard & AUV surveys 

North 
Velocity 





r2 = .95 
r2 = .74 

POC represents potentially 
 182 µmol oxygen/kg 

Upwelling can account 
For spatially distribution 

of recurrent upwelling eddies 



New Jersey Shelf Observing System (NJ-SOS) 

                               Satellites,  
RADAR, Gliders 

300 X 300 km NJSOS 
An Integrated &  

Sustained Observatory 



Where we do go from here? 



Marine Remote Sensing Webpage : Starting 1994  
(We weren’t even “COOL” yet!) 



How do we archive and distribute the data? 

Initial data distribution 
 - Duck Field Research Facility model.  

             - Monthly reports summarizing the data on an FTP site. 

A new approach to data distribution  
 - Keith Bedford (Ohio State University) approached us with a     

                        concept known as the “world wide web”. 

 - He claimed he could get 30 hits a month!  
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•  AirNet Communications 
Wireless Broadband (~1.5 Mbps, 
coverage 7 miles offshore from Sandy 
Hook) 

•  Verizon National Access (~100 
kbps, coverage up to 20+ miles off Long 
Island, less for New Jersey) 

•  Freewave Radio Modems (~80 
kbps, coverage for a 18 mile radius centered 
at Sea Bright Fire Department) 

•  Verizon Quick2Net (14.4 kbps, 
coverage up to 20+ miles off both New 
Jersey and Long Island) 

•  Iridium Satellite (2,400 bps, global 
coverage, data and voice) 



Global Glider Deployments 

Glider Stats 
Since Oct. 03 

KILOMETERS FLOWN: 15041 
CALENDAR DAYS: 504 

GLIDER DAYS: 704 



Warsh – NOAA 
1989 
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River?  
upwelling? 











Science focus Land-Ocean: How does the dynamics in the physical 
oceanography influence the transport and transformation of the 

particulate and dissolved matter in coastal buoyant plumes? 

Geyer and Fong 

Downwelling Upwelling 

Southern flowing  
turbid plume 

Eastern offshore flowing  
shallow turbid plume 
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CARBON IS PROVIDED TO THE  
SHELF FROM NURMEROUS RIVERS 

FED BY BIG WATERSHEDS 

Estuary Exit 
Near-Shore 
Shelf 



Input of organic matter is pulsed to coastal system as floods and punctuated 
tidal squirts.  Example, a tidal bore as it flows past the R/V Cape Hatteras 

Salinity 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 





Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 



Wind data from NOAA NDBC station at Ambrose Light 
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The Nearshore Recirculation: A Remineralization Incubator 
(known to locals as the Frazer eddy) 
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Warsh – NOAA 
1989 
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Freshwater Plume Moves Out Across the Shelf:  
Hudson Shelf Valley 



LaTTE 2005 –-Post Injection 2 – Final shipboard survey 
After luring the Cape Hatteras offshore. 

“The survey began on the ‘Highway’.  
We were near the glider when it 
surfaced.  We saw currents ripping 
southward in a 10 m thick layer of 
freshwater along the highway -- 
perhaps the most significant 
freshwater transport we saw all 
week.” 
      “Perhaps the most perplexing to 
me is ‘the Highway’ and why there 
has been a lack of a strong coastally 
trapped flow this week.”   

--- Bob Chant aboard  the Cape 
Hatteras,  April 21, 2005 



Freshwater Plume Moves Out Across the Shelf:  
Water Mass Boundaries 

(Oliver et al., 2004) 

April 13, 2005  

-NJ highway transports 
carbon, fish larvae, etc. 
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Thanks to 
Dave Ulman 





 Rutgers Coastal Observatory 
   Provide a Long-term Shelf-Wide 
   Context for High Resolution  
   Nested Process Studies 

LEO 

SW06 LaTTE 

Operations Center 

Inner boundary  
condition 

Outer boundary  
condition 



“I walk into our control room, with its panoply of views of the 
sea. There are the updated global pictures from the remote 
sensors on satellites, there the evolving maps of subsurface 
variables, there the charts that show the position and status of all 
our Slocum scientific platforms, and I am satisfied that we are 
looking at the ocean more intensely and more deeply than 
anyone anywhere else.” Henry Stommel 

Dawn in the age of observatories 

THANK YOU 
22 

Lessons learned: 
1) It takes years to build an integrated observing 
          network, good plan is to set aside ~ 5 yrs. 
2) Pay-off is worth it, however waiting for maturation 
          can be slow,  
3) Pay-off is discovering unexpected things 
4)  Pay-off is going to sea EVERY day  


