

Surface transport and cross-shelf exchange processes on the New Jersey Shelf

> Donglai Gong WHOI AOPE Seminar 2010-01-27

Dickey: HIGH-RESOLUTION PHYSICAL AND BIO-OPTICAL MEASUREMENTS

tides winds seasons topography river discharge large scale flow coastally trapped w. internal tides/waves WCR, frontal eddies synoptic storms

Transport and mixing of heat and salt biological productivity, dispersion of pollutants, fisheries

Guiding Questions

- Mean & background flow of the New Jersey Shelf? Effect of shelf topography?
- What is the seasonal meteorological condition and flow pattern on the shelf?
- How are material transported from the innershelf to the outershelf? Cross-shelf and along-shelf transport pathways? What is the residence time scale?
- How is surface shelf flow correlated with wind forcing, dependence on stratification?

4

"Seasonal Climatology of Wind Driven Circulation on the NJ Shelf" Gong, Kohut, Glen. in press.

Background no-wind flow

NJ Shelf Seasonal Mean Current (2002 - 2007)

Table 4. Cross-shelf drifter time (days), speed (km/wk) and fraction reaching 60 m isobath

Drifter Time	Jun 06	Sep 06	Dec 06	Mar 07	Dist to 60m
Site N	13.6	30.7	23.9	36.1	97
Site C	13.3	20.5	17.4	24.8	82
Site S	12.9	13.1	14.9	27.6	67
Drifter Speed	Jun 06	Sep 06	Dec 06	Mar 07	Dist to 60m
Site N	49.9	22.1	28.4	18.8	97
Site C	43.2	28.0	33.0	23.1	82
Site S	36.4	35.8	31.5	21.4	67
Fraction to 60m	Jun 06	Sep 06	Dec 06	Mar 07	Dist to 60m
Site N	0.27	0.09	0.73	0.39	97
Site C	0.68	0.17	0.99	0.71	82
Site S	0.77	0.25	1.00	0.45	67

Mean Current based on Wind (Winter)

Mean Current based on Wind (Summer)

Wind-Current correlation & variability

Table 3. Relative Variability of detided CODAR currents: R.M.S. / Mean

RMS/Mean	Summer	Winter	Spring	Autumn	All
All Dir.	4.9	2.6	3.0	3.0	3.3
NW	1.9	1.4	1.4	1.6	1.6
NE	1.3	0.9	0.9	1.1	1.1
SW	1.7	1.7	1.8	1.8	1.8
SE	6.8	1.8	3.7	3.0	3.5

13

Cross-correlation of Wind and Current (along Geographic Axes)

shelf surface flow summary

- Downshelf, offshore mean surface flow. Significant variability about the mean.
- Background flow under low wind conditions is consistent with previous MAB shelf observation/models. HSV influences downshelf flow behavior.
- Flow mainly cross-shelf (offshore) during stratified and mixed seasons, and mainly along-shelf (downshelf) during transition seasons. the residence time is on the order of 1-5 weeks.
- Surface flow is wind driven. Along-shore wind and cross-shelf flow is strongly correlated in summer, cross-shore winds and cross-shelf flow is strongly correlated in winter.

Summer 2006

Gliders & Moorings (SW06)

- 貒 outershelf using gliders, moorings, ships (July 19 - Oct 2, 2006)
- South of Hudson Canyon, 100 × 100 km² * between 30 & 100 m isobaths
- 17 deployments, 356 glider days, 6683 km * flown, 51933 CTD casts

40

Hi-res. oceanographic sampling of the 39.5

17

29

27.3

25.6

23.9

22.2

18.8

17.1

15.4

13.7

12

Processes affecting shelf-slope exchange

Fig. 6. As Fig. 3, but for August 1977, Knorr ACE III. (B—Pycnocline S-max.)

Surface:	$S \ge 34$, den ≤ 1024 , no $S < 34$ water in the upper 5 meters
Pycnocline:	$S \ge 34$, $1022 \le den \le 1025.7$, spiciness > 3.4, $z \le -10m$
Sub-Pycnocline:	$S \ge 34$, 1024.5 \le den \le 1026.2, 1 \le spiciness \le 3.2
Bottom:	$S \ge 34$, 1026.2 \le den, $0.5 \le$ spiciness ≤ 3

Outershelf Salt Budget

Definitions:

Surface:	$S \ge 34$, den ≤ 1024 , no $S < 34$ water in the upper 5 meters
Pycnocline:	$S \ge 34$, $1022 \le den \le 1025.7$, spiciness > 3.4, $z \le -10m$
Sub-Pycnocline:	$S \ge 34$, $1024.5 \le den \le 1026.2$, $1 \le spiciness \le 3.2$
Bottom:	$S \ge 34$, $1026.2 \le den$, $0.5 \le spiciness \le 3$

Cross-shelf Salt Balance...

Salt advected offshore \approx Salt 'diffused' onshore

$$\bar{U}\bar{S} = K\frac{dS}{dx}$$

$$\bar{U} = \frac{\Delta VolTr_{sh}}{Area_{100}} = \frac{0.3 \ Sv}{10^8 \ m^2} = 0.003 \ m/s \qquad \bar{S} = 33$$

 $\Delta VolTr_{sh} = TrN_{Flagg77/BB81} - TrS_{Biscaye94} \approx 0.5 - 0.2 \ Sv = 0.3 \ Sv$

 $\bar{U}\bar{S}=0.1~m/s$

 $\frac{d\bar{S}}{dx} = \frac{1.0}{10 \ km} = 10^{-4} \ m^{-1}$ $K_{Fischer80} \approx 3 \times 10^5 \ cm^2/s = 30 \ m^2/s$ $K_{Stommel72} \approx 3 \times 10^6 \ cm^2/s = 300 \ m^2/s$

$$K\frac{d\bar{S}}{dx} \lesssim 0.03 \ m/s$$

Slope water intrusions contribute up to 30% of the salt needed.

Weak Intrusion (Early Aug.)

Strong Intrusion (Late Aug.)

S = 33.19

$$\frac{dS_{Aug}}{dt} \times \frac{Vol}{Area_{100}} = 0.007 \ m/s$$

Along-shelf Flow

Cross-shelf Flow

SST: Slope Eddies

Two eddies near SW06:

1:8/06 - 8/10

2:8/22 - 8/27

Radius: ~50 km Speed: 22 - 9 cm/s

-10

-10

-10

-5

-5

-5

1530

1520

1510

1500

1490

1480

1530

1520

1510

1500

1490

1480

1530

1520

1510

1500

1490

1480

5

thicknesses and a second se

5

5

10

10

-15

-15

-15

-10

-5

0

-10

-5

0

-10

-5

0

10

SW06 ru05 snds 20060831T2100--20060905T1527 1530 -10 1111-11. -20 1520 -30 -40 1510 -50 1500 -60 -70 1490 -80 2006/09/01 -90 1480 -100 -25 -20 -15 -10 -5 5 -35 -30 0 10 Dist. from 100m Isobath

31

ru05 sw06 spiciness (7 to -40 km from 100iso) [D]

-10

ru05 sw06 spiciness (-35 to 5 km from 100iso) [D]

Evolution of Outershelf Hydrography & Stratification

What did we learn?

- Shelf-slope interface undergo significant intra-seasonal evolution.
 Along-shore wind & offshore forcings affect the vertical structure of the frontal interface.
- Slope water intrusions are common in late summer. 4 different types, some associated with slope water eddies. Cross-shore scale of 10-20 km, alongshelf scale of 15-30 km.
- Convergent cross-shore flow at the shelfbreak, intrusions are associated with tidal and inertial variability.
- Intrusions weaken outershelf stratification & contribute up to 30% of the outershelf salt budget.
- Barotropic and baroclinic tides not in phase. Internal wave activity highest during peak stratification and large internal tides.

Future studies

- The transport and mixing of heat, salt and sediments on continental shelves due to energetic storms.
- Role of submarine canyons, channels and valleys in shelfslope exchange.
- The cross-shelf exchange of heat and salt on the polar shelves.

Observation $\leftarrow \rightarrow$ Modeling

How do storms affect the shelf transport & mixing of heat and salt?

The role of shelfbreak canyons and shelf valleys in shelf-slope exchange?

ROMS ESPRESSO Domain 42 41 40 39 38 37 36 35 34 -78 -76 -70 -74 -72 -68

ESPRESSO Cross-shelf velocity (2006-12-04 -- 2007-02-25) ESPRESSO Cross-shelf velocity (2006-06-01 -- 2006-09-02) 0.08 -20 0.08 -20 0.06 -40 -40 0.06 0.04 -60 -60 0.04 -80 -80 0.02 0.02 () -100 Depth -120 Depth Depth (m) -100 0 0 -120 -0.02 -140 -140 -0.02 -160 -160 -0.04 -0.04 -180 -180 -0.06 -0.06 -200 -200 **Summer** Winter -0.08 -220 -220 -0.08 38 38.5 39 39.5 40 38 38.5 39 39.5 40 Latitude (alongshelf) Latitude (alongshelf)

2 year ESPRESSO model run by Gordon Zhang & John Wilkin

Acknowledgements

Advisor: Scott Glenn

Thesis committee: Robert Chant, Glen Gawarkiewicz, Oscar Schofield, and John Wilkin

RUCOOL Operations Team

Collaborators at OSU & WHOI