Stratified Coastal Ocean Interactions with Tropical Cyclones: Irene (2011) & Barry (2007)

Poster #: A54C-2732

Greg Seroka¹ (seroka@marine.rutgers.edu), Travis Miles¹, Scott Glenn¹, Yi Xu², Robert Forney¹, Hugh Roarty¹, Oscar Schofield¹, Josh Kohut¹ ¹Rutgers University Department of Marine and Coastal Sciences, ²East China Normal University

1. Baroclinic coastal ocean mixing processes have been identified in Irene and Barry.

- Tropical cyclone (TC) intensity forecast improvements currently lag the progress achieved for tracks
- TC research has focused on deep ocean, less to coastal processes despite critical importance to shoreline populations
- High Frequency (HF) radar (Fig. 1-2) and underwater gliders (Fig. 2) observed wind-forced 2-layer circulation of stratified coastal ocean and resultant shear-induced mixing across Mid Atlantic continental shelf

Fig 1. Strong onshore surface ocean currents due to easterly winds ahead of both Irene (left) and Barry (right) were observed by HF radar.

Fig 2. Gliders RU16 (Irene¹, left) and RU17 (Barry, right) observed highly stratified summer conditions (top) & low depth-averaged currents (green) throughout storms. CODAR HF radar observed strong onshore surface currents ahead-of-eye-center (red). Bottom layer currents, calculated from depth-weighted average of the HF radar and glider velocities, were offshore (Irene) and offshore & downshelf (Barry) ahead-of-eye-center (blue) Irene's dominant depth-averaged momentum balance (not shown) was wind stress opposing pressure gradient (TBD for Barry).

Opposing surface and bottom currents enhanced shear-induced mixing across the thermocline (black) and cooled the surface waters ahead-ofeye-center in both storms. Mixing terms dominated advective terms in Irene's heat balance analysis (not shown, TBD for Barry).

2. Resultant ahead-of-eye-center cooling was present in Irene, Barry, 9 other U.S. Mid Atlantic storms, and Typhoon Muifa in the Yellow Sea.

- The coastal baroclinic processes identified here (Fig. 1-2) occur ahead-ofeye-center (AOEC) due to onshore winds in front half of storms that move northward along an eastern coast.
- Buoys show same AOEC cooling signal as gliders (Table 1): on average, ~73% of in-storm cooling occurred AOEC.

Storm Name	Buoy	Water Depth (m)	Ahead-of- Eye-Center Cooling (°C)	In-storm Cooling (°C)
Arthur (2014)	44014	48	1.4	2.4
Irene (2011)	44009	26	4.5	5.5
Barry (2007)	ALSN6	29	5.1	5.1
Hermine (2004)	44009	31	0.9	1.1
Allison (2001)	CHLV2	14	2.3	2.6
Bonnie (1998)	CHLV2	14	4.2	4.2
Danny (1997)	44009	31	2.1	3.6
Arthur (1996)	44009	31	2.3	3.5
Emily (1993)	44014	48	2.3	2.8
Bob (1991)	44025	41	2.1	4.6
Charley (1986)	44009	31	2.7	5.4
Average		31	2.7	3.7
Std. Deviation		11	1.3	1.4
Irene (2011)	RU16 WRF 1D	37-46	0.0011	0.014
	Air-Sea Flux			
	RU16 WRF 1D	37-46	1.0	3.3
	RU16 WRF 3D PWP	37-46	5.2	9.2
	RU16 Observed	37-46	5.1	6.7
Irene (2011)	44065	25	3.8	4.2
Irene (2011)	44100	26	6.3	6.4
Muifa (2011)	37.045 N 122.66 E	31	4.1	4.8

Table 1. AOEC cooling (°C), in-storm cooling (°C), and % AOEC cooling observed at nearshore MAB buoys for 11 tropical cyclones that traversed the MAB continental shelf during summer stratified conditions (June-Aug) since 1985¹.

Satellite maps show unique cooling patterns for each storm (Fig 3). Irene: large area of >5°C, up to 11°C. Barry: warming south, cooling north.

Fig 3. Satellite maps of cooling for Irene¹ and Barry, obtained by differencing pre- and post-storm SST composites. Note uniform cooling for Irene and more complex cooling/warming patterns for Barry.

RUTGERS Center for Ocean Observing Leadership

3. Cooling has large impact on storm intensity and should be included in TC forecast models.

• >140 Irene WRF simulations (Fig. 4) show largest sensitivity to AOEC **cooling** (fixed pre-storm vs. fixed post-storm SST, as in Fig. 3).

Pressure and Wind Sensitivities: 8/27 2300- 8/28 1800 UTC

Group	Name	Options	
Model Setup	Horizontal resolution	3km vs. 6km	
	Vertical resolution	51 vs. 35 levels	
	Adaptive time step	on vs. off	
	B.C. (Frequency)	3 hrs vs. 6 hrs	
	Digital Filter Initialization (DFI)	on vs. off	
Atmospheric/ Model Physics	Microphysics	6 vs. 16	
	BPI schomo	5 vs. 1	
	PBL scheme	7 vs. 1	
	Cumulus parameterization	1 vs. 0	
	SST skin	on vs. off	
	Longwave radiation physics	1 vs. 4	
		5 vs. 4	
		99 vs. 4	
	Shortwave radiation physics	1 vs. 4	
		5 vs. 4	
		99 vs. 4	
	Latent heat flux <0 over water	on vs. off (warm SST)	
		on vs. off (cold SST)	
	Land surface physics	1 vs. 2	
Advanced	Air can flux parameterizations	1 vs. 0 (warm SST)	
Hurricane WRF	All-sea hux parameterizations	1 vs. 0 (cold SST)	
Sea Surface Temperature		Warm vs. Cold (isftcflx=2)	
	SST	Warm vs. Cold (isftcflx=1)	
		Warm vs. Cold (isftcflx=0)	
Advanced	Digital Filter Initialization (DFI)	on vs. off	
Humican - M/DC	1D Ocean Mixed Laver Medel	on (isothermal warm) vs. off	
nurricane WRF		on (stratified) vs. off	
(12-h later init.)	3D Ocean Price-Weller-Pinkel Model	on vs. off	

Fig 4. Irene WRF cumulative sensitivity results in both min sea level pressure (SLP) & max 10m wind.²

Rev., In Review (2016).

Support was provided by New Jersey Board of Public Utilities (2010RU-COOL, BP-070), the Environmental Protection Agency (EP-11-C-000085), New Jersey Department of Environmental Protection (WM13-019-2013), National Oceanic and Atmospheric Administration (NOAA) led Integrated Ocean Observing System through the Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS, NA11NOS0120038), NOAA Cooperative Institute for the North Atlantic Region (NA13OAR4830233), and Rutgers University.

