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INTRODUCTION

Antarctic coastal waters exhibit high rates of pri-
mary production (over 2 g C m−2 d−1 and 100 to 200 g
C m−2 yr−1) during a limited growing season of about
150 to 180 d (Smith et al. 1996, 1998, Smith & Gordon
1997, Arrigo et al. 1998, Vernet et al. 2008). This pri-

mary production supports large standing stocks of
top predators (whales, seals, and seabirds; Valiela
1995) with krill as the main trophic link between pri-
mary production and top predators (McWhinnie &
Denys 1980). This short diatom−krill−top predator
food chain is traditionally believed to be the most sig-
nificant pathway for the pelagic food web in Antarc-
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tic waters (Hart 1934, Huntley et al. 1991); however,
studies have highlighted the importance of microbial
processes (bacterial secondary production, micro -
zooplankton grazing) affecting the fate of primary
production (Hewes et al. 1985, El Sayed 1988,
Daniels et al. 2006). While krill prey mostly on dia -
toms, microzooplankton are able to prey on smaller
size phytoplankton and, like bacteria, are part of the
microbial food web. The relative importance of each
group of zooplankton (microzooplankton or krill),
and the path ways they are linked to, defines the fate
of primary production and the food supply for apex
predators.

The western Antarctic Peninsula (WAP) region has
experienced a rise of 7°C in mean winter air temper-
ature since 1951, making it one of the fastest warm-
ing regions on the planet (Smith & Stammerjohn
2001, Vaughan et al. 2003). Along with air tempera-
ture rise, the WAP is subjected to increased up -
welling of warm Circumpolar Deep Water (Martin-
son et al. 2008), a related decline of sea-ice extent
and seasonal duration (Stammerjohn et al. 2008), a
decrease in primary production of about 12% over
the WAP in the last 30 yr (Montes-Hugo et al. 2009),
a shift in phytoplankton size composition toward
smaller cell size (<20 µm; Moline et al. 2008, Montes-
Hugo et al. 2009), a decrease in krill abundance in
the northern WAP and an increase in prevalence of
salps (Atkinson et al. 2004, D. Steinberg unpubl.
data), and in some locations, a decline in populations
of a top predator, the Adélie penguin Pygoscelis
adeliae (Ducklow et al. 2007, 2012).

The WAP is the site of the Palmer Long Term Eco-
logical Research (PAL-LTER) project (www.pal.lter-
net.edu; Ducklow et al. 2007), with annual austral
summer oceanographic cruises in January including
routine measurement of primary production, phyto-
plankton pigments and size fractions, macrozoo-
plankton species abundance and biomass, bacterial
biomass and production, and censusing of penguins
and other seabirds. The WAP sampling region in -
cludes the foraging range of 2 colonies of Adélie pen-
guins, 1 situated near Palmer Station and the second
on Avian Island 400 km farther south. The population
at the northern colony has decreased sharply over
the last 3 decades, from 15 200 breeding pairs in 1975
to 2646 in 2008 (Palmer data, http://oceaninformatics.
ucsd.edu/datazoo/data/pallter/datasets; Ducklow et
al. 2007). The southern Adélie colony is thriving at an
estimated 77 515 breeding pairs, and is increasing in
size (2012/13 population census; W. Fraser unpubl.
data). A change in Adélie diet has also been ob -
served: Adélies from the northern colony went from a

diet of equal parts krill and Antarctic silverfish Pleu -
ragramma antarcticum in the early 1970s, the same
as Adélies from the southern colony at present, to a
diet composed entirely of krill by 1997 (W. Fraser
unpubl. data).

While some changes in the components of the food
web have been documented, as described above, the
rates of exchange between many food-web compart-
ments are not available, thus making it difficult to
estimate climate-induced changes in the interactions
among food-web compartments. To fill this gap and
obtain an objective picture of the food web as a
whole, we used the PAL-LTER data set to build and
constrain an inverse model for the pelagic food web.
The inverse model was used to follow year-to-year
changes in the food web (at the time of the cruise)
over a 12 yr period, 1995 to 2006, for both the north
and south Adélie colonies and foraging areas, total-
ing 24 inverse model solutions. We chose to separate
the north and south colonies, which are experiencing
different trends for both Adélie penguins and pri-
mary production (Moline et al. 2008, Montes-Hugo et
al. 2009). Our working hypothesis was that the north-
ern WAP was impacted earlier by climate change
and regional warming than the south; thus it follows
that the present state of the southern WAP is similar
to that of the northern WAP more than 2 decades
 earlier (Ducklow et al. 2012). Consequently, the
questions that we focused on through this study were
(1) What are the differences between the northern
and southern food webs? (2) What is the evolution
and state of the system through the 12 yr period? (3)
What is the importance of krill versus microbial pro-
cesses? (4) Is the decline of the northern Adélie pen-
guin colony explained by a decline in krill biomass
or is the decline linked to other causes (e.g. physical
effects, food quality, chick recruitment)?

METHODS

Food web model

We constructed a steady-state inverse model of the
WAP pelagic food web based on the earlier models
by Ducklow et al. (2006) and Daniels et al. (2006).
The inverse model provides a snapshot of the system
each January, and the model structure depends on
data availability to constrain flows between com -
partments. As in Ducklow et al. (2006), the inverse
model includes small phytoplankton (<20 µm, mostly
crypto phytes), large phytoplankton (>20 µm, mostly
dia toms), heterotrophic nanoflagellates, microzoo-
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plankton, krill Euphausia superba, Adélie penguins,
Antarctic silverfish, detritus, dissolved organic car-
bon (DOC), and bacteria, as well as respiration and
export processes in addition to exchanges between
compartments (e.g. grazing, excretion, egestion).
The earlier food web was modified by aggregating
heterotrophic nanoflagellates and microzooplankton
together (until recently, there were few field data in
the PAL-LTER study region for these 2 groups of
organisms; Garzio & Steinberg 2013, Garzio et al.
2013) and by the addition of salps. Presence of a sil-
verfish component differs between the northern (sil-
verfish absent from the penguin diet and considered
functionally extinct) and southern (silverfish present
in the penguin diet) regions. The resulting inverse
model is composed of 7 or 8 living compartments
(small phytoplankton, large phytoplankton, bacteria,
microzooplankton, salps, krill, Adélie penguins, and
silverfish in the south) and 2 non-living compart-
ments (detritus and DOC). These 10 (south) or 9 (north)
compartments are mass balanced with inflows equal-
ing outflows for each compartment (Table 1). In addi-
tion, 4 non-balanced compartments serve as external
boundary conditions for the ecosystem. Two of these
are the observed primary production for small and
large phytoplankton, used to constrain the input to
each phytoplankton compartment. The other 2 corre-
spond to respiration and export, the latter containing

inputs from other compartments of carbon that will
not be recycled within the pelagic food web. Export
includes sinking particle flux, lateral transport, and
organic matter that is stored locally (e.g. DOC) and
recycled later in the year. The whole system is mass
balanced with the inflows from primary production
equaling the outflows to respiration and export. Each
possible and realistic interaction between compart-
ments is considered (Table 1) and taken into account
as a potential flow between compartments. Flows
between compartments are constrained to be either a
fixed value obtained from observations (e.g. primary
production of each phytoplankton group), or between
minimum and maximum bounds defined by relation-
ships obtained from the literature (Table 2).

Data

Constraints for some of the inverse model compo-
nents (e.g. phytoplankton, krill, salps, penguins, bac-
teria) were obtained using data from PAL-LTER
annual survey cruises in each austral summer (Janu-
ary) during the breeding season of Adélie penguins
(http://pal.lternet.edu/data/, for data and sampling
method). Measurements were converted to carbon
biomass or fluxes per square meter (integrated over
the top 35 m), and averaged over the foraging radius

255

Compartment                            Abbreviation         Mass balance (inflow = outflow)

Primary production by                     ppS                 –
small phytoplankton

Primary production by                     ppL                 –
large phytoplankton

Small phytoplankton                         phS                 ppS = phS-mic + phS-salp + phS-res +phS-doc + phS-det + phS-ext
Large phytoplankton                        phL                 ppL = phL-mic + phL-krill + phL-res + phL-doc + phL-det + phL-ext
Bacteria                                              bac                 doc-bac = bac-mic + bac-salp + bac-res + bac-doc + bac-det
Microzooplankton                             mic                 phS-mic + phL-mic + bac-mic + det-mic = mic-krill + mic-res + mic-doc

+ mic-det
Salp                                                    salp                 phS-salp + bac-salp + det-salp + mic-salp = salp-res + salp-doc + salp-

det + salp-ext
Krill                                                     krill                 phL-krill + mic-krill + det-krill = krill-fish + krill-pen + krill-res + krill-

doc + krill-det + krill-ext
Pleuragramma sp.                             fish                 krill-fish = fish-pen + fish-res + fish-doc + fish-det + fish-ext
Adélie penguins                                pen                 krill-pen + fish-pen = pen-res + pen-doc + pen-det + pen-ext
Detritus                                               det                 phS-det + phL-det + bac-det + mic-det + salp-det + krill-det + fish-det +

pen-det = det-mic + det-krill + det-salp + det-doc + det-ext
DOC                                                   doc                 phS-doc + phL-doc + bac-doc + mic-doc + salp-doc + krill-doc + fish-doc

+ pen-doc + det-doc = doc-bac + doc-ext
Respiration                                         res                  –
Export                                                 ext                 –

Table 1. Mass balance relations used in inverse analysis, with flows labeled as ‘from-to’; external compartments (ppS, ppL, res, 
ext) are not mass balanced. DOC: dissolved organic carbon
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of the Adélie penguin colonies. Phytoplankton were
constrained with measured primary production and
chlorophyll concentration integrated over the upper
35 m to include the entire euphotic zone and deep
chlorophyll maximum (Fig. 1a,b). Assuming, for each
sampling period, that size-fractioned primary pro-
duction is proportional to size-fractioned chloro-
phyll a (chl a) concentration, we divided primary pro-
duction into large (>20 µm) and small (0.4−20 µm)
phytoplankton pools. For years without a size frac-
tion determined through chl a filtration (1995 to

1998), we used HPLC pigment data processed
through ChemTax (Wright & Van den Enden 2000) to
determine the diatom fraction in the phytoplankton.
We assumed that the large fraction is composed
entirely of diatoms. There are fewer HPLC measure-
ments than chl a filtration data in terms of stations
sampled, and the record is not continuous (missing
2 years in South WAP, 1 year in North WAP). In
 addition, there is a disparity in size fraction and total
chl a between HPLC and filtration: there is no bias,
but a year-to-year variation of inconsistent ampli-
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Fig. 1. Input data from observations for (a) primary production, (b) percentage of primary production due to large phytoplank-
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tude. Thus HPLC was not used for all size fraction
determinations.

Krill and salp abundance data (Fig. 1d,e) are from
trawls taken in the upper 120 m of the water column
(but integrated to 0−35 m for this analysis). Abun-
dances were converted to carbon biomass using rela-
tionships found in the literature (krill: Morris et al.
1988, Siegel 1992 for abundance to wet weight con-
version, Pakhomov et al. 2002 for wet weight to dry
and carbon weight conversions; salps: Huntley et al.
1989, Phillips et al. 2009 for abundance to wet weight
conversion, and Pakhomov et al. 2002 for wet weight
to dry and carbon weight conversions). Penguin pop-
ulation size (Fig. 1f) is from the number of breeding
pairs, counted annually for the northern colony
(http://pal.lternet.edu/data/) and for the southern
colony estimated using aerial photography to estab-
lish baselines and annual ground censuses of refer-
ence colonies to determine trends. Bacterial abun-
dance and productivity (measured with the leucine
incorporation technique; Fig. 1e) integrated to 35 m
were also used. Data on bacteria are only available
from 2002 onward (Fig. 1c); average bacterial bio-
mass and productivity values were used as con-
straints for the years without data (1995−2001).
 Comparing solutions using bacterial constraints from
averaged data versus yearly data showed changes of
less than 10% for flow through bacteria, and 5% or
less for flow through other compartments. In addi-
tion, constraints for respiration and ingestion of DOC
by bacteria were loose (2 orders of magnitude differ-
ence between minimal and maximal constraints),
allowing the use of averaged biomass and production
to determine constraints for years with and without
data.

Finally, dilution experiments to measure microzoo-
plankton grazing in 2010 to 2011 showed that graz-
ing of microzooplankton grazers removes 32 to 63%
d−1 of total primary production, and 61 to 71% of
small phytoplankton (nano- and pico-) primary pro-
duction at Palmer Station (Table 2 in Garzio et al.
2013). We constrained the inverse model flow from
phytoplankton to microzooplankton to reflect their
‘preference’ for smaller phytoplankton by constrain-
ing ingestion as a percentage of primary production
by each size class. The use of a percentage constraint
provides for flexibility in the flows, allowing for pos-
sible covariation of microzooplankton biomass and
phytoplankton production (see Table 2 for the con-
straints on ingestion). Additionally, the data on bio-
mass and abundance of microzooplankton collected
at the same time (Garzio & Steinberg 2013) were
used with an allometric relationship (Moloney &

Field 1989) to obtain constraints for the flows through
microzooplankton. We then compared the flows for
constraints based on the allometric relationship or
‘food preference.’ No significant differences were
found between the 2 approaches. We chose to use
the latter for the reason mentioned above (covaria-
tion of microzooplankton with phytoplankton). If we
did not use constraints on microzooplankton inges-
tion (i.e. only on respiration and excretion), flows
from large phytoplankton to microzooplankton were
overly important compared to flows to krill. With con-
straints on microzooplankton ingestion, the flows of
large phytoplankton to microzooplankton and krill
were closer to the expected flows within the Antarc-
tic food web. The inverse model was applied to North
and South WAP areas for the 1995 to 2006 time
period. North and South WAP were defined by the
Adélie colonies at Anvers (north) or Avian (south)
Islands, including nearby hydrographic stations on
the lines from the sampling grid (600 and 200,
respectively; Waters & Smith 1992). As such, the
 designations ‘North WAP’ and ‘South WAP’ refer to
their position relative to each other and on the sam-
pling grid, not to their overall geographic position.

In the model run, unless otherwise indicated, top
predators were Adélie penguins. The attachment of
Adélie penguins to a nest facilitates their individual
count, providing annual absolute abundances. Other
krill predators (e.g. fur seal, crabeater seal, whales)
or Adélie predators (e.g. leopard seal, killer whales)
are not subjected to a regular census. Other predator
censuses do not provide absolute measures of their
abundance, only trends in their populations for the
region.

Inverse model solution

Another difference from the inverse models of
Ducklow et al. (2006) and Daniels et al. (2006) is the
method used to solve the food web and obtain flow
values. Mathematically, linear inverse problems can
be written in matrix notation as (Glover et al. 2011):

A × x ≈ b (1)

E × x =  f (2)

G × x ≥ h (3)

where x is a vector containing all of the unknown
flows of carbon between compartments. A is a matrix
of the topological food web, b gives the mass con -
servation relationships (equalities that have to be
met approximately), E includes site-specific meas-
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urements so f is a vector of site-specific constraints
that have to be met (equalities that have to be met
exactly, e.g. primary production), and G contains
physiological constraints so that h puts bounds on
flows and defines relationships between flows (in -
equalities or bounds on flows). Often the problem
originally only contains the latter 2 types of equations
(Eqs. 2 & 3), and the approximate equalities (Eq. 1)
are added to single out 1 solution.

Quadratic and linear programming methods are
the main mathematical techniques used to solve the
vector x in this type of model. Ducklow et al. (2006)
and Daniels et al. (2006) solved the inverse model
with a least-squares approach in Matlab. We imple-
mented the inverse model in R (LIM package,
Xranges function, Soetaert et al. 2009), giving us a
new set of tools to solve the set of linear equations.
Depending on the active set of equalities (Eq. 2)
and constraints (Eq. 3), the system is either under-
determined, evenly determined, or over-determined.
Solving these problems depends on how the model is
determined and the size of the solution space (Glover
et al. 2011):

If the model is evenly determined, there is only 1
solution that satisfies the equations exactly. This
solution can be singled out by matrix inversion or
using the least squares method.

If the model is over-determined, there is only 1
solution in the least squares sense; this solution is sin-
gled out (least squares with equalities and inequali-
ties). This can also return the parameter covariance
matrix, which gives an indication of the confidence
intervals and relationships among the estimated
unknowns (elements in x).

If the model is under-determined, an infinite num-
ber of solutions exists. To solve such models, there
are several options: (1) finding the ‘least distance’ or
parsimonious solution, i.e. the solution with minimal
sum of squared unknown path lengths between com-
partments; (2) estimating value ranges by succes-
sively maximizing and minimizing each unknown in
turn (Monte Carlo); the mean of all results is then a
model solution; or (3) randomly sampling the solution
space using a Markov chain. This third method re -
turns the marginal probability density function for
each unknown (Van den Meersche et al. 2009).

The WAP inverse model is composed of 48 flows
(unknowns), 11 of which are unconstrained, 33 of
which are constrained by inequalities (some includ-
ing more than 1 flow), and 2 of which are constrained
by equalities (primary production), making it overall
an under-determined inverse model. The parsimo-
nious solution (1) used by Ducklow et al. (2006) and

Daniels et al. (2006) has a tendency to maximize or
minimize the values of intercompartmental flows,
particularly for microbial flows (Stukel & Landry
2010, Stukel et al. 2012), and was set aside as less
desirable. We used the Monte Carlo approach (2) as
it gives us an average value for the flows within the
range of valid solutions as well as the uncertainties
on flow values (note that uncertainties are only pre-
sented for key results, and where it would not im -
pede figure comprehension). We did not use the ran-
dom sampling method (3) as the obtained flow values
were not significantly different from the Monte Carlo
approach, and the method seemed to create correla-
tion between flow values.

Network indices

To gain insight on major food web processes such
as the fate of primary production, system-level net-
work indices (Legendre & Rassoulzadegan 1996)
were used to compare food-web states from inverse
model solutions. The network indices described 3
major pathways for carbon flow through a food web
(Fig. 2): the sinking and export of ungrazed phyto-
plankton, food-web transfer to upper trophic levels,
and recycling through the microbial loop. These 3
pathways are related to the phytoplankton size
structure and matching (synchronization) of phy -
toplankton production with grazing. Legendre &
Rassoul zadegan (1996) derived analytical solutions
for the proportion of the primary production allo-
cated to each of the 3 pathways based on the ratio
of large phytoplankton primary production (Pl) to

259

Primary production 

Sinking of algal cells 
(export) 

DOC 

Zooplankton 

Detritus 

Export 

Dt 

Ft 

Rt 

Pt 

Et 

Fig. 2. Pathways for primary production, based on Legendre
& Rassoulzadegan (1996). Pt: total primary production;
Rt: recycled material; Dt: sinking of ungrazed phytoplank-
ton cells; Ft: export due to transfer through the food web;
Et: total export; DOC: dissolved organic carbon. Note
that this is not a representation of the western Antarctic 

Peninsula food web



Mar Ecol Prog Ser 492: 253–272, 2013

total primary production (Pt), Pl/Pt, and 4 other
indices: Rt/Pt, the ratio of recycling to total primary
production; Ft/Pt, the ratio of export due to food
web transfer to higher trophic levels; Dt/Pt, the ratio
of export of intact algal cells; and Et/Pt, the ratio
between export and total production (Fig. 2). The
values for Pt, Rt, Ft, Dt, and Et are related through
Et = Ft + Dt and Pt = Rt + Et. The food-web transfer
term, Ft, includes any carbon passed up the food
chain that is then exported out of the surface ocean;
this includes sinking fecal pellets (export of detritus)
and export production of mesozooplankton or krill
(e.g. sinking carcasses). Dt is the fraction of un -
grazed, sinking phytoplankton; in the inverse model,
it is the amount of phytoplankton directly exported.
The recycling pathway Rt was found by subtracting
the total export (Et) from the total net primary pro-
duction (Pt). The Rt term is equal to the sum of flows
going to respiration directly and the DOC produced.
Et/Pt is conceptually equivalent to the e- or f-ratio
commonly used in oceanography (Eppley & Peter-
son 1979). Note that in our case, Pl and Pt are not
obtained from the inverse model flow value but
from the data. The ratio of primary production by
large phytoplankton to total phytoplankton helps
define the fate of primary production carbon. This is
because small phytoplankton cells are more likely
to become a part of the microbial loop than large
phytoplankton. Thus it can be defined as a network
index, and we kept the definition from Le gen dre &
Rassoulzadegan (1996).

Legendre & Rassoulzadegan (1996) used values
from the literature to estimate the magnitude of these
pathways for 5 different types of food webs, includ-
ing a polar one. The pathways ranged along a contin-
uum of decreasing export to primary production (e-)
ratios. At one extreme is the sinking of ungrazed
phytoplankton, representing a food web with
high primary production that is not matched by
grazing. At the other extreme is the microbial
loop, an almost closed system with near 0 ex -
port of primary production, consisting of bacte-
ria and protozoans. Between the 2 extremes in
order of decreasing export/primary production
are the herbivorous, multivorous, and microbial
food webs. The separation between the 3 food
webs (Fig. 2) depends primarily on the parti-
tioning of phytoplankton size fractions. A food
web with a phytoplankton assemblage domi-
nated by larger cells (diatoms) will have pre-
dominantly large zooplankton (e.g. meso- and
or macrozooplankton, such as krill in the WAP)
and high export through fecal pellets. This is

the herbivorous food web with high Pl/Pt, Ft/Pt, and
Et/Pt (Table 3). In a food web with a phytoplankton
assemblage dominated by smaller cells, the predom-
inant grazer will be microzooplankton, leading to a
lower export rate, as their smaller fecal pellets sink
more slowly and are more subject to remineraliza-
tion. This is the microbial food web with low Pl/Pt,
Ft/Pt, and high Rt/Pt (Table 3). The multivorous food
web is situated between the herbivorous and micro-
bial food webs, with more balanced importance of
respiration and export. The food webs and pathways
obtained with the network indices provide a baseline
to compare the North and South WAP inverse model
solutions in austral summer through the 12 yr period.

RESULTS

North and South WAP

In both the North and South WAP, the observations
used to constrain the inverse model (Fig. 1) exhibited
high interannual variability. The interannual vari-
ability makes a direct comparison between the North
and South WAP for any particular year difficult.
Instead, data for the 12 yr period were averaged and
used to constrain what can be referred to as an aver-
age food web for each region. There was a relatively
greater abundance of large phytoplankton in the
South WAP, but overall the smaller size fraction of
phytoplankton tended to contribute substantially to
primary production in both regions (on average 69%
in the North WAP and 52% in the South WAP). In the
North WAP, the large and small phytoplankton,
microzooplankton, krill, and DOC compartments all
had throughputs ranging from 8 to 35 mmol C m−2 d−1

(Fig. 3a). In the South WAP, believed to be less im -
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Pathway Index values
Pl/Pt Rt/Pt Ft/Pt Dt/Pt Et/Pt

Sinking of ungrazed cells 1 0 0 1 1
Herbivorous food web 0.8 0.3 0.6 0.1 0.7
Multivorous food web 0.35 0.6 0.3 0.1 0.4
Microbial food web 0.1 0.8 0.2 0 0.2
Microbial loop 0 1 0 0 0

Table 3. Network index values for specific pathways, after Le gen -
dre & Rassoulzadegan (1996). Pl/Pt: ratio of primary production by
large cells to total primary production; Rt/Pt: ratio of recycling to
total primary production; Ft/Pt: ratio of export due to transfer
through the food web to total primary production; Dt/Pt: ratio of
sinking of ungrazed phytoplankton cells to total primary pro -
duction; Et/Pt: ratio of total export to total primary production (see 

Fig. 2 for index and food web)
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pacted by regional warming and more characteristic
of Antarctic food webs (Ducklow et al. 2007), the
large and small phytoplankton, microzooplankton,
krill, and DOC compartments all had throughputs
ranging from 8 to 16 mmol C m−2 d−1 (Fig. 3b). For
both regions, the largest intercompartmental flow
was ingestion of small phytoplankton by microzoo-
plankton (mean ± SD = 17.7 ± 3.8 and 7.7±1.9 mmol
C m−2 d−1 in the North and South, respectively;
Fig. 3), followed by krill ingestion of large phyto-
plankton (diatoms, 6.3 ± 2.9 and 5.5 ± 2.6 mmol C m−2

d−1 in the North and South; Fig. 3) and bacterial
uptake of DOC (8.5 ± 5.6 and 5.2 ± 3.5 mmol C m−2

d−1 in the North and South; Fig. 3).
In the North WAP, the higher biomass of small

phytoplankton on average led to larger ingestion of
total primary production flows for microzooplankton

compared to krill: 38 versus 26%, respectively. In the
South WAP, inflows through microzooplankton and
krill were more even: 30 versus 28%, respectively
(Fig. 3). Importantly, the solutions satisfy the meta-
bolic requirements of krill and penguins in both
regions. There was greater carbon flow through salps
in the north, with an ingestion of small phytoplank-
ton by salps of 0.5 mmol C m−2 d−1 in the North WAP
compared to 0.2 mmol C m−2 d−1 in the South WAP
(Fig. 3). For comparison, flow from small phytoplank-
ton to microzooplankton was 17.3 and 7.7 mmol C
m−2 d−1 in the North and South WAP, respectively
(Fig. 3). Unless there was a salp bloom event (e.g.
North WAP in 2005; Fig. 1e), flows through salps,
penguins, and fish accounted for less than 1% of pri-
mary production individually and less than 2% of
primary production when added together. Flows
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through bacteria, microzooplankton, and krill ac -
coun ted for most of the primary production (60 to
80%); the rest goes to phytoplankton respiration,
DOC excretion, detritus, and export through sinking
of ungrazed cells. Part of the DOC produced was
used by bacteria, and part of the detritus was grazed
by microzooplankton, salps, and krill.

Ingestion depends on both the biomass of the
grazer (minimum bound) and the predation pressure
it is under. Respiration reflects the metabolism of the
organism and depends on the organism biomass
(minimum bound) and/or total ingestion (maximum
bound). Comparison of inflow and outflow, normal-
ized to total primary production, denotes the impor-
tance of the organism for the food web as a pathway
for primary production. We made this comparison
annually for the 1995 to 2006 time period, to deter-
mine any long-term change. Flows (ingestion and
respiration) through bacteria, microzooplankton, and
krill were normalized to primary production and
examined for possible trends (Fig. 4). Note that
although krill ingest microzooplankton, this flow of
carbon amounts to a maximum of 10% of the primary
production being directed to krill through microzoo-
plankton, or less than half of microzooplankton total
ingestion, allowing one to consider separately the
roles of microzooplankton and krill within the food
web.

On average, normalized flows through microzoo-
plankton, bacteria and krill were roughly compar -
able (Table 4) with those through microzooplankton
somewhat more important. In the North WAP, micro-
zooplankton ingestion accounted for 32% of the pri-
mary production versus 20% for the krill. These val-
ues were 22 and 20% in the South WAP (Table 4),
suggesting different flows through the system be -
tween the North and South. In the South, normalized
ingestion and respiration flows varied with time
around an average value for all organisms (Fig. 4).
Normalized ingestion of microzooplankton was slightly
higher than that of krill, and normalized krill res -
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                                               South                     North

Ingestion
Bacteria 16.6 ± 9.9 12.8 ± 3.7
Microzooplankton 22.3 ± 6.9 32.1 ± 10.8
Krill 20.2 ± 7.7 20.0 ± 6.1

Respiration
Bacteria 8.5 ± 4.4 8.6 ± 3.2
Microzooplankton 8.0 ± 2.7 11.7 ± 4.2
Krill 16.0 ± 7.8 16.4 ± 5.2

Table 4. Mean ± SD of model-derived yearly respiration and
total ingestion as a percentage of yearly total primary pro-
duction for bacteria, microzooplankton and krill in the 

North and South western Antarctic Peninsula
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piration was slightly higher than that of microzoo-
plankton. Tendencies for high or low flow values
covary among bacteria, microzooplankton, and krill.
The unusual values in 1999 were due to the fact that
it was a year with low primary production dominated
by small phytoplankton resulting in higher DOC lev-
els and bacterial production. Overall, there was no
substantial trend over the 12 yr period in the South
WAP.

In the North WAP, the normalized ingestion of car-
bon by microzooplankton was usually higher, up to
twice that ingested by krill and bacteria (Fig. 4).
Exceptions were 1995, 1996, 1999, and 2002; krill
biomass was high in 1996, and in the other 3 years,
the phytoplankton assemblage was dominated by
the large size fraction, resulting in higher carbon
flows through krill. There was a trend toward increas -
ing normalized flows through bacteria (ingestion and
respiration, Fig. 4a,b), especially the normalized
 respiration that tripled between 1995−1996 and
2003−2006. At the same time (2000−2006), the nor-
malized ingestion by bacteria approached that of
krill. Additionally, in the North WAP, there was an
apparent inverse correlation of flow through krill
 versus through bacteria and microzooplankton from
2000 onward. Normalized ingestion and respiration
of bacteria and microzooplankton exhibited high val-
ues when those of krill were low. This can be related
to decreased summer primary production near
Palmer Station, from 99 to 22 mmol C m−2 d−1 between
1996 and 1999 (Fig. 1a). Similarly, the increase in
normalized bacterial flows can be related to the rela-
tive decrease in large phytoplankton from 40% in
1995−1999 to 20% in 2000−2006. This resulted in
an increase in flows through the DOC pool due to
release by small phytoplankton; the small phyto-
plankton to DOC flow for the average constraints
solution was 5.9 and 2.6 mmol C m−2 d−1 in the North
and South WAP, respectively (Fig. 3), illustrating
regional differences in the source and fate of the
DOC.

Ecosystem indices

The relative importance of the microbial food web
(bacteria and microzooplankton) versus the diatom−
krill−apex predator food chain over time (1995−2006)
can be explored with network indices. According to
Fig. 2 and Legendre & Rassoulzadegan (1996), a
pelagic food web dominated by the diatom−krill−
apex predator food chain would be a herbivorous
food web, with phytoplankton dominated by large

diatoms (Pl/Pt > 0.8), less recycling (Rt/Pt < 0.6), an
efficient transfer of primary production toward
higher levels (Ft/Pt > 0.6), and high export of un -
grazed primary production or fecal pellets (Et/Pt >
0.7 and Dt/Pt > 0.1). Note that the choice of constraint
for microzooplankton ingestion did not affect ecosys-
tem indices values.

Note that since Pl/Pt directly reflects observational
constraints, it does not have a model-derived uncer-
tainty as its value does not depend on the inverse
model results, contrary to the other indices. For all
other network indices, the large uncertainties for
indices that fall within the multivorous range reflects
the variety of fates for primary production carbon
compared to the more straightforward bacterial or
herbivorous food web.

The first index (Pl/Pt; Fig. 5) was constrained by
size fraction and pigment observations (Fig. 1b).
There was substantial interannual variation in the
index value: 0.02 to 0.91 in the north and 0.22 to 0.77
in the South, with average values of 0.31 and 0.49,
respectively. Average Pl/Pt in the North increased in
years of high diatom fraction (1999 and 2002, over
80% of diatoms), but for most years, Pl/Pt was below
0.4 (0.35 being the value for a multivorous food web).
The Pl/Pt value in the North decreased over time
with the indices switching from defining a herbivo-
rous−multivorous food web toward defining a more
microbial food web. Interannual variation in the
South was less pronounced. Pl/Pt values for the
South stayed in a range characteristic of a herbivo-
rous−multivorous food web, except for 2003 and 2005
when Pl/Pt values indicated a multivorous−microbial
food web.

The recycling index, Rt/Pt, derived from the in -
verse model flows, showed interannual variation;
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however, the variability was not as large as Pl/Pt
(Fig. 6). In the North, Rt/Pt varied from 0.55 to 0.83
with an average of 0.73, while in the South, Rt/Pt var-
ied from 0.55 to 0.83 with an average of 0.67. The
North Rt/Pt increased with time (R2 of 0.6) from
approximately 0.6 in 1995−1996 to around 0.8 by
2006, indicating a transition from a multivorous to a
microbial food web (Table 3) as the dominant path-
way for primary production. South Rt/Pt values indi-
cated a multivorous−microbial food web except for
1995 and 1996, when values were between the micro-
bial food web and microbial loop. Overall, South
Rt/Pt did not show any trend with time.

The food web transfer index Ft/Pt (results not
shown) was very low (<0.15 for both North and
South). This low Ft/Pt described either a microbial
loop or sinking of ungrazed primary production
(Table 3). The fourth index, Dt/Pt, reflecting produc-
tion of detritus (results not shown) varied between
0.1 and 0.45 in both the North and South, with an
average of 0.19 and 0.28, respectively. North Dt/Pt
values exhibited a decreasing trend to 0.1 or below
(value of 0.09 in 2003, R2 of 0.6), indicating a her -
bivorous−multivorous food web with a trend toward
a dominant microbial pathway. South Dt/Pt values
indicated a herbivorous−multivorous food web with-
out any trend.

The export index Et/Pt gives additional information
on what processes govern the food web (Table 3,
Fig. 7). North Et/Pt was highest in 1995 and 1996
(0.38 and 0.45, respectively), consistent with a multi-
vorous food web; however, from 1999 to 2002, Et/Pt
indicated a microbial food web. For 2002 to 2006,
Et/Pt was variable and indicated a system oscillating
between a microbial food web and a dominant micro-
bial loop. In the South, 1995 and 1996 had Et/Pt

 values below 0.1, indicating that almost all of the
 primary production carbon was recycled. The years
2001, 2003, and 2006 all had values around 0.3,
 indicating a microbial food web. Et/Pt values in
other years varied around 0.40 for a multivorous−
herbivorous food web.

The individual ecosystem indices can be combined
to characterize the food-web state (Fig. 8). Individu-
ally, each index gave information on where a specific
process places the food web in terms of herbivorous
versus microbial processes (Table 3). When the
indexes are really close to the value for one pathway,
this is the state of the system. If the indexes fall in
between 2 values, then it indicates a system with
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mixed pathways. The evolution of the aggregated
index for the North WAP suggests a system that was
functioning as a herbivorous−multivorous food web,
which over the 12 yr evolved toward a microbial food
web. Over the 12 yr period, the South WAP started as
a strongly microbial system (maybe as a result of
decreased flow through krill and the low sea-ice
years in previous winters, Figs. 4 & 9), then oscillated
between a herbivorous and microbial food web; on
average, the South WAP was a multivorous food web.
In general, neither region was herbivorous, and both
had important microbial elements.

Penguin−krill sensitivity experiments

For all years, both in the North and South, the
nutritional or energy needs of Adélie penguins were
met at a level slightly higher than their minimal con-
straints value (i.e. the minimum amount of intake
needed to satisfy basal metabolism). For example,
the minimum bound < solution value < maximum
bound for flow of krill to penguin was 0.00367 <
0.00375 < 0.0042 mmol C m−2 d−1 in the North and
0.0413 < 0.0422 < 0.0472 mmol C m−2 d−1 in the South
WAP for average constraints. On a side note, the par-
simonious solution value for penguin ingestion was
close to the maximal constraint in both North and
South (results not shown). Because the model indi-
cates that the Adélies in the North WAP were not
starved, it raises the question of whether the food
web was capable of supporting a larger colony. In
1975, the Adélie population at Palmer Station was

estimated to be 15 202 breeding pairs, a value we
used to constrain a larger population in a sensitivity
experiment. The state of the food web, especially pri-
mary production, varies from year to year, so instead
of picking a year in which to implement the modified
Adélie constraints, we used the North WAP average
food web. Estimated Adélie ingestion of krill for the
1975 population was higher than the minimum con-
straints (0.0167 < 0.0171 < 0.0191 mmol C m−2 d−1),
indicating that the current food web could support
more than the minimum daily ration at the higher
population constraint. The factor of 5 increase in
Adélie population had little impact on other flows
within the food web; any changes in flows were less
than 0.1% of the ‘original’ value.

However, Adélie penguins are not the only krill
predators in WAP waters, and in 2010, Adélies
accounted for just 50% of the total penguin popula-
tion at Palmer Station (Ducklow et al. 2012; W. Fraser
unpubl. data; http://oceaninformatics.ucsd.edu/data-
zoo/data/pallter/datasets). The other 50% is com-
prised of chinstrap and gentoo penguins that have ap -
peared since the 1990s. Baleen whales and crabeater
seals also use krill as their main food source, and krill
are an important part of fur seal diets as well. The
addition of other krill predators in the inverse model
would impact flow to penguins as well as other flows
through the food web, possibly inducing food starva-
tion for adult Adélies and changing the whole food-
web state. To ascertain the effect of additional krill
predators on penguin ingestion and krill flows, we
used the inverse model with average constraints for
the North and added an external compartment for
other top predators. The other top predator compart-
ment, as an external compartment, is not subject to
mass balance, and the only inflow was from krill and
equal to a fraction of average krill biomass, equiva-
lent to cropping out part of the krill biomass each
day. The cropping factor was no greater than natural
loss and predation by Adélies combined. The crop-
ping ranged from 0 to 5% d−1 of the average krill bio-
mass in the North WAP, in 0.5% d−1 increments.
When the new solutions are computed, flows through
krill readjust to the increased demand. Changes in
flows through krill were less than 7% of the initial
value. Mostly krill outflows (respiration, export, and
DOC) were reduced to account for the additional
predation, with no increase in krill ingestion. Flows
through other compartments were not affected,
except for a decrease in bacteria ingestion by 20%
(from 0.17 to 0.13 mmol C m−2 d−1), which can be
linked to an increase in phytoplankton respiration
and export to fit the new constraints, as well as a
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reduced pool of DOC. This result and the previous
one (size of the Adélie population) suggest that the
actual krill stock can sustain the Adélie penguin pop-
ulation as well as additional krill predators. In addi-
tion, the model food web has sufficient flexibility to
accommodate the increased demand within the
bounds of the constraints we set.

Salp sensitivity experiment

Over the years, increasing numbers of salps have
been captured in trawls in the WAP shelf region
(Fig. 1e; trend continues in 2009−2012; D. Steinberg
pers. obs.). Salps are efficient grazers of small phy -
toplankton, bacteria and microzooplankton, which
they repackage into rapidly sinking fecal  pellets
that are exported out of the euphotic zone (Gleiber et
al. 2012). With around 40% of ingested nitrogen and
49% of ingested carbon excreted (Pakhomov et al.
2002), salps also increase the pool of dissolved
organic matter available for bacterial production.
The WAP average salp abundances over the 12 yr
period were 2.8 and 1.0 ind. m−2 in the North and
South, respectively. To fully evaluate the impact of
salps on the WAP food web, a sensitivity experiment
was conducted by setting both North and South WAP
abundances to a high value (56 ind. m−2, observed
in the Ross Sea; Pakhomov et al. 2006). In both the
North and South, the flow of carbon through salps
increased in proportion to the salp biomass increase,
and as a result, flows through other compartments
were reduced to maintain mass balance. For ex -
ample, the flows from detritus to krill and micro -
zooplankton were increased to compensate for the
decrease in the flow from other resources. Addition-
ally, salps had similar effects on the pathways for car-
bon in the North and South WAP. The presence of
salps increased the transfer of carbon through the
food web (Ft) and the export (Et) while reducing the
respiration (Rt, less carbon circulating
in the microbial loop). The effect
was negligible in the South WAP and
the food web remained multivorous.
In the North WAP, export and food-
web transfer were doubled, changing
the food web from a microbial to a
multivorous food web. These results
showed that the system could sustain
both salps and krill, but increased
presence of salps could change the
carbon pathways and further alter the
system.

Mesozooplankton (copepods) 
sensitivity experiment

Copepods can be a significant component of the
Antarctic food web, at times even exceeding krill in
terms of biomass and grazing pressure. We included
copepods in the inverse model food web as a generic
omnivore, i.e. grazing on phytoplankton (large and
small), microzooplankton, and detritus. Loss terms
are respiration, egestion (to detritus and export),
excretion (to DOC), and loss due to grazing by krill
and, in the South WAP, silverfish (see Table 5 for con-
straint details). To help constrain the flows, we used
available copepod biomass (>750 µm, thus including
mostly larger species) from the 2009 to 2011 PAL-
LTER austral summer cruises; the highest biomass
recorded was used for the North and South WAP,
respectively.

In both the North and South WAP, the inverse
model results indicate that the presence of copepods
decreases the flow of carbon from small phytoplank-
ton to microzooplankton and from microzooplank-
ton to krill. These flows of carbon are redirected
through copepods, i.e. small phytoplankton to cope-
pods, microzooplankton to copepods, and copepods
to krill. Flows through bacteria, salps, and Adélie
penguins are slightly impacted (less than 15% change
in flow value). These changes are expected with the
inclusion of a new compartment and the resulting
new flows.

The impact on network indices is a change of 0.03
and 0.04 in the North and South WAP, respectively,
for the values of Rt/Pt, Ft/Pt, and Et/Pt. In the North,
Rt/Pt decreased while Ft/Pt and Et/Pt increased,
which means a slight increase in food web transport
and subsequent export over the recycling processes.
In the South, Rt/Pt increased while Ft/Pt and Et/Pt
decreased, describing a slight increase in recycling
processes over food-web transfer. However, in both
cases, the change in network indices does not indi-
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Rate Lower bound Higher bound Source

Ingestion rate 0.82 µg C 45 µg C Li et al. (2001) 
ind.−1 d−1 ind.−1 d−1 Dubischar &

Bathmann (1997)
Respiration 4.9 µg C ind.−1 d−1 100% ingestion Calbet et al. (2006)
To DOC 10% ingestion 90% ingestion –
To detritus 10% ingestion 90% ingestion –
To export 10% ingestion 90% ingestion –

Table 5. Constraints on copepods flows for the inverse model. DOC: dissolved 
organic carbon
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cate a change in the dominant pathway and system
state with the inclusion of copepods in the food web.

DISCUSSION

State of the system

Our inverse model results indicated that the WAP
system is not dominated by the diatom−krill−apex
predator food chain, primarily because microzoo-
plankton ingested double the amount ingested by
krill, and carbon flow through bacteria is equivalent
to ~75% of the carbon ingested by krill. Microzoo-
plankton grazing on both the large and small fraction
of phytoplankton, as well as on bacteria, was an effec-
tive link between krill and smaller organisms. In fact,
krill gut contents can contain from 20 to 80% micro-
zooplankton (gut volume; Perissinotto et al. 2000), and
information generated by the inverse model suggests
that microzooplankton could make up from 10 to 70%
of total carbon ingested by krill (37% in the South,
56% in the North, on average). The amount of micro-
zooplankton ingested by krill varied with the fraction
of large phytoplankton available; krill ingest more
micro zooplankton to cover their metabolic needs
when there are fewer large phytoplankton (Bernard
et al. 2012). The importance of microzooplankton as a
link between smaller organisms and krill shows that
the South WAP food web can be described as a multi-
vorous system, oscillating between a fully herbivorous
food web with krill as the dominant grazer, and a
 microbial food web where microzooplankton grazing
and bacterial production are more important. How-
ever, South WAP bacterial ingestion and respiration
rates did not increase with time, suggesting that the
system is not evolving toward a more microbially-
dominated food web.

Based on the inverse model-derived ecosystem
index values, the North WAP food web has appar-
ently transitioned from a multivorous to a microbial
food web over time. Microbial processes became
increasingly important with the increase in small
phytoplankton primary production and resultant de -
crease in flow through krill. This is illustrated by bac-
terial ingestion and respiration increasing from 5 to
15% of primary production over the 1995 to 2006
period, and the inverse correlation between krill and
microzooplankton ingestion and respiration (Fig. 4).
While there was considerable interannual variation
in both krill and microbial (bacteria and microzoo-
plankton) flows in the South WAP, there were no
long-term directional trends.

According to our initial hypothesis, the North WAP
was once in the same state of multivorous equilibrium
as the South WAP is now. If so, a transition occurred
prior to the sampling period considered here. It re-
mains to be explored whether the transition from one
state to the other was progressive, or happened
abruptly when the system reached an un known tip-
ping point, like the decline of the Adélie population
(Scheffer et al. 2001, Bestelmeyer et al. 2011). Even
though it is possible that the South WAP is now in the
same state as the North WAP was in 2 decades ago,
we cannot know its original state or whether it has
fully settled into a new state. South WAP variability
(Figs. 1 & 5−9) could reflect several scenarios: (1) the
oscillating state that the North WAP was in 2 decades
ago; (2) the relaxation from an unknown state into a
new state; or (3) an ongoing transition toward the same
microbial-dominated state as the North WAP, as the
effects of climate change become more pronoun ced
and sea-ice coverage/duration continues to decli ne.
The transition observed in 1995 to 2000 from a mi cro -
bial to multi vorous food web supports both hypo theses
2 and 3 because the South WAP could be settling into a
multivorous food web state, or recovering from a dis-
turbance (e.g. low sea-ice years and decline of sea-ice
duration in the 1990s, Fig. 9) that had temporarily re-
sulted in a microbial system in 1995 or earlier.

The difference between the North and South WAP
is also linked to bacterial dependence on the amount
of available DOC. In both the North and South, the
main source of DOC is phytoplankton exudation,
from both the large and small size fractions. Grazing
of large phytoplankton by krill reduces the amount of
DOC that can be exuded by this phytoplankton size
fraction, leaving small phytoplankton as the major
source of exuded DOC for bacteria. In the South,
where the ratio of large to small phytoplankton aver-
ages 0.49, there was little fluctuation in the amount of
DOC available to bacteria. In contrast, the percent-
age of primary production due to large phytoplank-
ton in the North decreased with time, and the DOC
pool increased with small phytoplankton predomi-
nance (greater inflow from the small phytoplankton
to the DOC); as a result, DOC uptake by bacteria
increased in the North as well. Rates of DOC release
by sloppy feeding are higher for grazing on larger
phytoplankton (Møller 2004). Thus, when the phyto-
plankton assemblage is dominated by the larger size
fraction, sloppy feeding by krill is an additional
source of DOC (up to 3% of the grazed phytoplank-
ton carbon, 12% by excretion; see Saba et al. 2011 for
copepods). This effect is not accounted for in the
inverse model constraints.
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When describing pathways and network indices,
Legendre & Rassoulzadegan (1996) assumed that the
fate of primary production is linked primarily to the
phytoplankton size fraction: the more smaller phyto-
plankton are present, the more the system turns into
a microbial food web. However, they did not take the
fate of DOC into account. In our analysis, carbon
entering the DOC pool is considered as part of the
recycling pathway (Rt) along with respiration. In the
solutions, DOC export is as important as particle
(detritus) export, but DOC export is not included in
Et because only particles are taken into account for
this index. Seasonal observations of DOC at Palmer
Station (Years 2002 to 2012) show repeated peaks
with an amplitude of approximately 20 mmol C m−3

above the background concentration that can last
about 2 wk. This indicates a build-up and subsequent
use of the DOC pool, or lateral or vertical advection.
The average flow of exported DOC in the inverse
model is 4.8 mmol C m−2 d−1, equivalent to the build-
up of about 1 mmol C m−3 in the same time period as
the observed DOC variations, much smaller than
indicated by Palmer Station data, which may be
influenced by local-scale variability. Obviously, the
mass-balance in the inverse model forces any accu-
mulated DOC to be subsumed into export, neglecting
the possibility of a non-steady state of DOC and large
fluctuations in the pool.

If the DOC is truly advected away, it would more
appropriately be accounted for as a part of food web
transport (Ft) or export of unused phytoplankton car-
bon, changing the dominant pathway toward a more
multivorous/herbivorous fate of primary production.
On the other hand, if it is used by bacteria and re -
spired locally, it is part of the recycling pathway (Rt)
and the dominant pathway for the fate of primary
production is microbial. This suggests that the micro-
bial state of the food web (North or South) may be
slightly overestimated by the network indices. The
trends towards an increase of microbial processes
with time are still valid. Resolving these questions
requires a better understanding and additional data
on the fate of DOC (e.g. use by bacteria, accumula-
tion, transport) and how its source (e.g. phytoplank-
ton, krill) impacts its fate (e.g. bacterial preference
for DOC from small phytoplankton).

Finally, while our inverse model effort focused on
ecosystem dynamics, physical forcing and dynamics
should not be neglected. Melting of sea ice increases
stratification, favoring the start of the productive sea-
son. Sea-ice duration and extent in WAP waters have
decreased over the past several decades (Stammer-
john et al. 2008). Changes in sea-ice conditions cou-

pled to warming have favored more sub-polar organ-
isms, including salps, that are not ice dependent, in
contrast to krill and Adélie penguins (Ducklow et al.
2012). The general consensus is that there is little co-
occurrence of salps and krill; the system will tend to
accommodate either one or the other (Pakhomov et
al. 2002). Recent PAL-LTER data may necessitate a
reevaluation of this generalization. The increase in
salp abundance, as well as the results of the salp sen-
sitivity experiment, suggests that other parameters
are influencing the separation between krill and
salps. The likely factor is the dominant size class of
phytoplankton: large phytoplankton cells (favored by
krill) clog the filtering apparatus of salps, leading to
starvation and death (Perissinotto & Pakhomov 1998).
If phytoplankton populations become dominated by
small phytoplankton, it will reduce the importance of
the diatom−krill food chain and favor salps, changing
the food web further (e.g. increased but more spo-
radic export, Gleiber et al. 2012; weakening of apex
predators, Loeb et al. 1997).

Adélie penguins

The inverse model results suggest that a food-web
structure consistent with current observations can
provide enough krill to sustain penguin metabolic
requirements as constrained, either at current or his-
toric population levels. Addition of other krill preda-
tors to the inverse model, as simulated with the crop-
ping of krill by other top predators, would still not
prevent Adélies from obtaining enough krill to sus-
tain themselves. It is important to remember that
these experiments only address an average state, in
which krill were uniformly available to their preda-
tors throughout the study period, and do not, for
example, consider changes in the spatial distribu-
tion or availability of krill within the local foraging
range at each location, as might have occurred with
changes in the seasonality and duration of sea-ice
cover, and other region-specific ecosystem changes
(Stammerjohn et al. 2008, Montes-Hugo et al. 2009).
Factors other than summer food supplies and daily
rations that also affect Adélies in the breeding and
growing season are beyond the scope of this bio -
energetics-based food-web model.

The inverse model results indicating sufficient krill
biomass to support the Adélie penguin colony and
additional predators are supported by krill biomass
data and census of krill predators. The krill standing
stock over the northern Adélie colony foraging area,
and available to the Adélies, is 2.25 × 106 kmol C

268



Sailley et al.: Antarctic pelagic ecosystem dynamics

(from data used to constrain the inverse model, 12 yr
average). A population of 100 crabeater seals would
consume approximately 5.7 kmol C d−1 (Priddle et al.
1998). The number of seals that depend on krill as
part or all of their diet in the area surrounding Palmer
Station is on average 200 individuals (W. Fraser
unpubl. data), so the addition of other top predators
would not increase krill predation enough to change
flows through the inverse model. The daily consump-
tion by seals is 1 order of magnitude less than the
daily consumption by Adélie penguins (69.2 kmol C
d−1). The estimated whale population on the entire
WAP in 2000 consumed a minimum of 1.78 ×
106 kmol C d−1 (Reilly et al. 2004). If all of these
whales were concentrated in the foraging area of the
northern Adélie penguin colony, the population
could remove about 80% of the krill biomass in a
 single day. This is of course an extreme example, but
it indicates how episodic predation events could
impact our data analysis.

Copepods

As with the other top-predator compartment, we
addressed copepods with a sensitivity analysis.
Cope pods can be the dominant phytoplankton grazer
in areas where, or at times when, krill are scarce, and
copepod fecal pellets can occasionally contribute sig-
nificantly to export flux (Gleiber et al. 2012). How-
ever, in austral summer, krill are the dominant graz-
ers especially in water influenced by sea ice (Bernard
et al. 2012, Steinberg et al. 2012), and krill fecal pel-
lets dominate export flux (Gleiber et al. 2012). The
sensitivity analysis showed how inclusion of cope-
pods changed flows through the WAP pelagic food
web. While a significant amount of carbon is redi-
rected through copepods, it did not significantly
impact the value of network indices and the resulting
dominant pathway in either the North or South WAP.
However, in the changing system that is the WAP,
their role and that of other mesozooplankton groups
should be considered (Steinberg et al. 2012).

Caveats for model interpretation

Several caveats should be considered in interpret-
ing the inverse model results. One is the patchiness
of the environment, especially of krill distribution.
The second is the quality of krill as prey in terms of
lipid content (energy reserves), which is related to
the dynamics of the krill stocks along the WAP (iso-

lated population or inflow from other parts of the
Southern Ocean).

The patchy prey distribution cannot be adequately
addressed in this model. By averaging the krill bio-
mass over the penguin foraging area, we assumed a
homogeneous distribution of krill and ignored forag-
ing cost and time. Energy expenditure for foraging
increases the daily portion of krill needed by adult
Adélies. Trivelpiece et al. (2011) concluded that the
observed decline in some penguin populations (in -
cluding the one at Palmer Station) is due to a decline
in krill biomass. However, at Palmer Station, accord-
ing to our results, krill are sufficient to sustain the
Adélie population even though Adélies have de -
clined in recent decades. As such, the problem may
be one of availability of krill to the penguins rather
than one of simple total krill quantity. The high spa-
tial variability of krill (not taken into account in our
work) and the dependence of Adélies on sea ice
could combine to prevent the penguins from having
access to enough krill to support themselves and
their chicks. By this we mean that krill swarms could
occur out of the foraging area of the Palmer region, or
that Adélies or the krill swarms present in the forag-
ing area could be too low in density. As a result, even
though there apparently are enough krill in the WAP
area to meet the metabolic needs of Adélies, the
energy Adélies must expend in search of krill could
be too high. This is supported by Atkinson et al.
(2008), who pointed out that only 13% of the krill
population can be found in waters populated by krill
predators.

Additionally, there is the issue of the North WAP
krill stock origin and state. Model constraints do not
account for krill growth, reproduction, and reserve
building. It is possible that primary production is suf-
ficient to support the krill stock, that is to maintain
the population, but no more than that. Consequently,
krill may not have the opportunity to build their inter-
nal energy reserves and are thus a poor-quality prey
(i.e. low energetic value, low lipid content). If so, the
decline in Adélies would not only be due to the lack
of prey availability but also due to low prey quality.
Low prey quality could also explain why the Adélie
chicks are not reaching an appropriate fledgling
weight in the North WAP compared to the South
WAP (Fraser & Hofmann 2003, Chapman et al. 2010),
with the possibility that food limitation is occurring at
the chick stage, not the adult stage, as assumed. This
concern is somewhat addressed by the fact that there
is a high flow from krill to export; the model did not
include a capability for storage of reserves, and con-
sequently carbon that could have gone into reserves
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is instead exported to preserve the mass-balance.
Carbon that is not attributed to an outflow goes to the
export; thus, in the model at least krill have the avail-
able resources to build reserves, and krill quality
likely is not the only factor causing penguin starva-
tion. The Antarctic silverfish, another important item
in the Adélie diet, is now functionally extinct from
the northern area around Palmer Station (W. Fraser
unpubl. data). Consequently, the absence (presence)
of Antarctic silverfish in the diet of Adélies from the
colony in the North (South) is more likely to affect
chick survival.

Another important factor influencing these find-
ings is seasonality. Due to the sampling scheme and
the inherent nature of the inverse model, we have
been working with a succession of ‘snapshots’ of the
food web during the austral summer. This succession
of ‘snapshots’ is adequate for checking whether the
system changed through time but not to assess sea-
sonal variation. In winter and early spring, the sys-
tem is different, with sea ice playing an important
role in shaping the physics and the biology. Sea ice
has been declining and retreating earlier in the sea-
son over the past years (Fig. 9; Stammerjohn et al.
2008). Consequently, although we only observed and
studied the WAP during the summer, the observed
summertime changes along with the results of the
present study also reflect the importance of the win-
ter−early spring period and its changes in recent
decades. Other seasons remain much less well stud-
ied than the summer period considered here and
should be considered in future work

CONCLUSION

The WAP pelagic ecosystem is in transition or in
different states along a north−south gradient. The
North WAP food web, in its current state, can sustain
the colony of Adélies at its current or historic levels,
even competing with other krill predators such as
crabeater seals or baleen whales. Considering the
diet differences between the North and South Adélie
colonies (i.e. absence/presence of fish), the reason for
the decline of the northern colony may be in the
quality and not the quantity of the food supply
(Chap man et al. 2010). Overwintering factors and
other non-food related factors that influence breed-
ing success (e.g. early season snowfall, glacial melt-
water; Chapman et al. 2011) must also be considered.

Lastly, predominance of the microbial processes or
the diatom−krill food chain is of importance in how
we visualize and approach the Antarctic coastal eco-

system. For example, Huntley et al. (1991) asserted
that 20 to 25% of the primary production in Antarctic
coastal water is respired by top predators. This con-
clusion was reached through the use of a model
where 80% of the primary production is consumed
by zooplankton, not including microzooplankton.
However, both observations and our inverse model
results point out that a maximum of 10% of the pri-
mary production is channeled through krill or other
grazers (e.g. copepods and pteropods; the exception
being salp blooms with considerably higher grazing
impact on primary production, Bernard et al. 2012).
Since krill are among the primary prey items for top
predators, and of commercial interest, overestimat-
ing their grazing impact could have far reaching
 consequences, as could the transition from a krill-
dominated ecosystem state to a more microbial-
based system.
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