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S p e c i a l  Iss   u e  O n  Co  a s ta l  Lo  n g  T e r m  E c o l o g i c a l  R e s e a r c h

	A  Nonmarine Source of  
Variability in Adélie Penguin Demography

A primary research objective of the 
Palmer Long Term Ecological Research 
(LTER) program has been to identify 
and understand the factors that regulate 
the demography of Adélie penguins 
(Pygoscelis adeliae). In this context, our 
work has been focused on variability in 
the marine environment on which this 
species depends for virtually all aspects 
of its life history (Ainley, 2002). As we 
show here, however, there are patterns 
evident in the population dynamics of 
Adélie penguins that are better explained 
by variability in breeding habitat quality 
rather than by variability in the marine 
system. Interactions between the geo-
morphology of the terrestrial environ-
ment that, in turn, affect patterns of snow 
deposition, drive breeding habitat quality.

Our seabird research in the Palmer 
LTER region has historically focused 
on five island rookeries (Figure 1a). At 
the inception of investigations in 1974, 
they hosted 15,202 breeding pairs of 
Adélie penguins (Ducklow et al., 2013, 
in this issue). During the 2011/2012 
field season, these same rookeries hosted 
2,411 breeding pairs—an 83% decrease 
in abundance relative to original esti-
mates. As Figure 1b shows, changes 
in these populations have not been 
symmetrical, but instead appear to be 
island-specific. Most noteworthy among 
these changes is that, of the five original 

populations, only four remain, as the 
Litchfield Island population went extinct 
in 2007. This event is remarkable, as the 
island’s paleoecological record indicates 
this population has been in existence for 
at least 500 years (Emslie et al., 1998). 
It is also noteworthy that both radio 
and satellite telemetry data show that 
these five, now four, island populations 
have overlapping foraging ranges over 
the Palmer Deep Canyon during the 
breeding season. The canyon is a nearby 
(~ 15 km) bathymetric feature long 
thought to be important to the forag-
ing ecology of this species (Fraser and 
Trivelpiece, 1996; Fraser and Hofmann, 
2003; Oliver et al., 2012; Schofield et al., 
2013, in this issue). Variability in the 
abundance and availability of marine 
prey cannot subsequently be regarded as 

a plausible explanation for the patterns 
observed in Figure 1b. 

Snowfall in our primary study areas 
on the five islands accumulates dispro-
portionately on landscapes with a south-
west exposure, where higher numbers of 
recently abandoned and extinct colonies 
also occur. These patterns are the result 
of wind scour during storm events, 
where predominant northeast winds 
shift snow loads from north- to south-
facing landscapes (Fraser and Patterson, 
1997). This pattern leads us to hypoth-
esize that island geomorphology plays a 
strong role in determining breeding hab-
itat quality (classified as optimal versus 
suboptimal after Patterson et al., 2003). 
Following this rationale, we expanded 
previously developed hillshade models 
(cf. Patterson et al., 2003) to include our 
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five primary island study sites in order to 
assess the relationship between island-
specific breeding habitat quality and cor-
responding penguin population trends 
(changes in breeding pairs per year). 
Hillshade models are cartographic tools 
that use elevation data and an illumina-
tion source (the convention is a default 
direction and angle of the sun above the 
horizon) to produce three-dimensional 
shaded relief maps that highlight inter-
actions among elevation, slope, and 
aspect. In this study, elevation data also 
informed our hillshade models, but we 
substituted the predominant direction 
of winds during storm events (north-
east) for the “illumination” source. This 

allowed us to highlight and thus calcu-
late the areal proportion of suboptimal 
habitat (i.e., having a southwest aspect 
where snow is most likely to accumulate) 
present on each of the islands of interest.

As Table 1 shows, habitat suitability 
varies by island, with the proportion of 
suboptimal habitat being greatest for 
Litchfield Island (89.5%) and least for 
Humble Island (44.2%). Importantly, 
the slope of the population trend was 
related to the amount of suboptimal 
habitat (Poisson regression, interaction 
term = –0.31, P < 0.0001); specifically, 
populations decrease faster as the areal 
extent of suboptimal habitat increases. 
Although variability in breeding success 

(chicks crèched per pair) would seem 
to offer a mechanistic explanation to 
account for these results, this was not 
observed. Thus, while there is a highly 
significant relationship between island 
habitat quality and breeding success 
(F = 7.7, df1,2 = 4, 95, P < 0.0001), it is 
only Litchfield Island that shows a sig-
nificantly lower value; there were no 
differences in long-term breeding suc-
cess among the other islands despite 
significant differences in their rates of 
population decrease.

Precipitation has been increasing for 
decades over the region that constitutes 
much of the Palmer LTER sampling grid 
(Turner et al., 2005), suggesting that our 
observations may be due at least in part 
to a threshold effect, that is, a change in 
the dynamics associated with the depo-
sition and persistence of snow across 
these island landscapes. Litchfield Island 
exhibits the greatest amount of sub
optimal habitat, the lowest breeding suc-
cess, and steepest decrease in the Adélie 
penguin breeding population during the 

Figure 1. (a) Palmer Station, Antarctica, and vicinity showing the Palmer Deep Canyon and the five island populations of Adélie penguins. Island color shad-
ing from dark to light blue reflects an increasing percent of island-specific suboptimal penguin breeding habitat. (b) The islands’ respective population trends 
(breeding pairs/year) since the inception of the Palmer LTER in 1991. To visually compare the trends, breeding pairs/year were standardized as (breeding pairs 
in year i/breeding pairs in 1991) x 100. HUM = Humble Island. TOR = Torgersen Island. COR = Cormorant Island. CHR = Christine Island. LIT = Litchfield Island. 
Year denotes the austral field season, thus 1991 = 1991/1992 field season. 
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study period. However, as previously 
noted, the paleoecological record indi-
cates that Adélie penguins have occupied 
this island for at least 500 years (Emslie 
et al., 1998), implying not only that a 
shift has occurred in breeding habitat 
quality (from optimal to suboptimal as 
a function of increasing precipitation), 
but that this shift was both abrupt and 
relatively recent. If this is the case, we 
would predict that the Cormorant Island 
penguin population will be extinct next, 
as its landscape-habitat dynamics appear 
similarly vulnerable to a threshold effect 
if precipitation continues to increase. 
Although it has recently been pro-
posed that variability in the biomass of 
Antarctic krill (Euphausia superba) is the 
dominant driver of demographic change 
in Adélie penguins (Trivelpiece et al., 
2011), our findings suggest that models 
of population change based on food web 
processes alone may be insufficient to 
account for the observed variability. 
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Table 1. Island-specific relationships among breeding habitat quality,  
Adélie penguin population (breeding pairs/year) decrease, and breeding success.  

The rate of decrease is ordered from fastest to slowest.  
Time series denotes number of years included in the analyses. 

Island
Suboptimal
Habitat (%)

Population
Trend 
(Slope)

Slope 
P-Value

Rate of
Decrease

Breeding
Success
(Mean ± SE)

Time 
Series 
(Years)

Litchfield 89.5 –0.1772 < 0.0001 1 0.80 ± 0.13a 16

Cormorant 63.0 –0.1105 < 0.0001 2 1.20 ± 0.05 21

Christine 46.8 –0.0869 < 0.0001 3b 1.19 ± 0.05 21

Torgersen 44.3 –0.0889 < 0.0001 3 1.20 ± 0.06 21

Humble 44.2 –0.0743 < 0.0001 4 1.32 ± 0.05 21

a denotes a statistically significant difference (P < 0.05) when compared to the other islands.  
b the repeated value 3 for Christine and Humble Islands indicates no significant difference in the  
	 slopes (P = 0.20).  
SE = Standard error.
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